

Constraining the multipolar magnetic field of MSP J0030+0451 via *NICER*X-ray light curve fitting

Anu Kundu*, North-West University

TEAM:

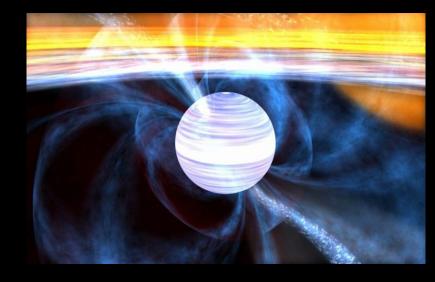
Harding, Alice K. (LANL)

Kalapotharakos, Constantinos (NASA GSFC/UMCP/CRESST II)

Kazanas, Demosthenes (NASA GSFC)

Venter, Christo (CSR, NWU)

Wadiasingh, Zorawar (NASA GSFC/USRA)

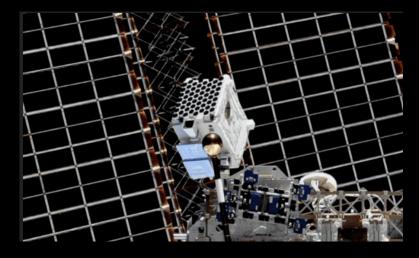

*anukunduo2@yahoo.com

Outline

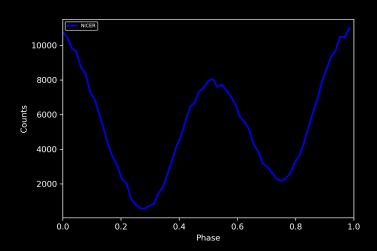
- Introduction
- Multipolar magnetic field
- Methods
- Markov chain Monte Carlo (MCMC) runs
- Summary

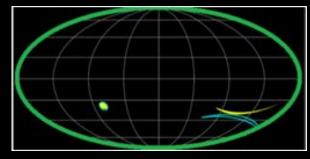
Introduction: MSP PSR J0030+0451

- Millisecond pulsars (MSPs)
 - Old pulsars
 - Period < 10 ms


Introduction: MSP PSR J0030+0451

- Millisecond pulsars (MSPs)
 - Old pulsars
 - Period < 10 ms
- J0030: Isolated MSP, minority in MSP population
- Spin period 4.865 ms
- Multiwavelength emission:
 - discovered as a radio pulsar using Arecibo
 - identified as an X-ray pulsar with ROSAT
 - first gamma-ray MSP announced by Fermi


Introduction: NICER view of J0030


- Neutron star Interior Composition Explorer (NICER)
 - Soft X-ray band (0.2–12 keV)
 - Science goal: Constrain the equation of state

Introduction: NICER view of J0030

- Neutron star Interior Composition Explorer (*NICER*)
 - Soft X-ray band (0.2–12 keV)
 - Science goal: Constrain the equation of state
- Light curve (LC) of J0030: two peaks
- Possible origin: hotspots on surface
- Fit the light curve, model hotspots on the surface
 - Kalapotharakos et al. (2021): static offset dip+quad magnetic field
 - Updating magnetic field: retarded centred multipolar field, up to I=3; Pétri (2015)

Kalapotharakos et al. (2021)

Multipolar magnetic field outside neutron star

$$B(r, heta,\phi,t) = \sum_{l=1}^{\infty} \sum_{m=-l}^{l} \left[B_r(r, heta,\phi,t) + B_ heta(r, heta,\phi,t) + B_\phi(r, heta,\phi,t)
ight]$$

where,

$$\begin{split} B_r &= -\frac{\sqrt{l(l+1)}}{r} f^B_{lm} Y_{lm}(\theta) e^{im\phi} e^{-im\Omega t} \\ B_\theta &= -\frac{\partial_r (r f^B_{lm})}{r \sqrt{l(l+1)}} \partial_\theta (Y_{lm}(\theta)) e^{im\phi} e^{-im\Omega t} + \frac{i\mu_0 m \Omega f^D_{lm}}{\sin \theta \sqrt{l(l+1)}} im Y_{lm}(\theta) e^{im\phi} e^{-im\Omega t} \end{split}$$

$$B_{\phi} = - \; rac{\partial_r (r f_{lm}^B)}{r \sin heta \sqrt{l(l+1)}} im Y_{lm}(heta) e^{im\phi} e^{-im\Omega t} - rac{i \mu_0 m \Omega f_{lm}^D}{\sqrt{l(l+1)}} \partial_{ heta} (Y_{lm}(heta)) e^{im\phi} e^{-im\Omega t}$$

Multipolar magnetic field outside neutron star

Terms with r dependence

I = 1: Dipole

I = 2: Quadrupole

I = 3: Octopole

...

m = - I to I : different orientations for the corresponding multipolar component

$$\begin{split} B_r &= -\frac{\sqrt{l(l+1)}}{r} f_{lm}^B Y_{lm}(\theta) e^{im\phi} e^{-im\Omega t} \\ B_\theta &= -\frac{\partial_r (r f_{lm}^B)}{r \sqrt{l(l+1)}} \partial_\theta (Y_{lm}(\theta)) e^{im\phi} e^{-im\Omega t} + \frac{i\mu_0 m\Omega f_{lm}^D}{\sin\theta \sqrt{l(l+1)}} im Y_{lm}(\theta) e^{im\phi} e^{-im\Omega t} \end{split}$$

$$B_{\phi} = -rac{\partial_{r}(rf_{lm}^{B})}{r\sin{ heta}\sqrt{l(l+1)}}imY_{lm}(heta)e^{im\phi}e^{-im\Omega t} - rac{i\mu_{0}m\Omega}{\sqrt{l(l+1)}}\partial_{ heta}(Y_{lm}(heta))e^{im\phi}e^{-im\Omega t}$$

Multipolar magnetic field outside neutron star

Terms with r dependence Terms with (ϑ, φ) dependence I = 1: Dipole I = 2: Quadrupole

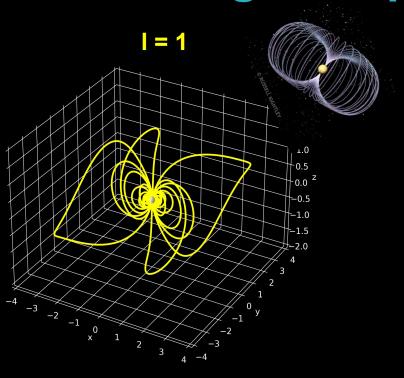
I = 3: Octopole

...

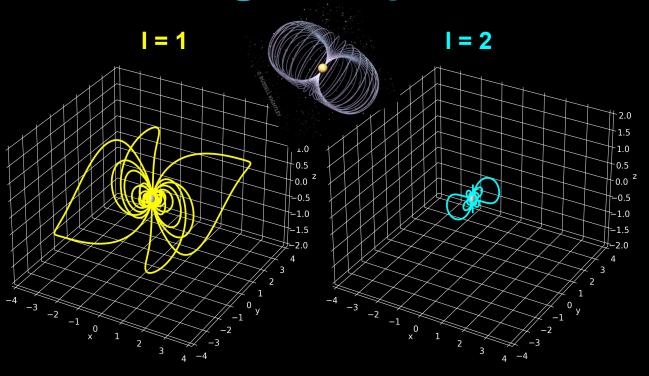
m = - I to I : different orientations for the corresponding multipolar component

$$\begin{split} B_r &= -\frac{\sqrt{l(l+1)}}{r} f_{lm}^B Y_{lm}(\theta) e^{im\phi} e^{-im\Omega t} \\ B_\theta &= -\frac{\partial_r (r f_{lm}^B)}{r \sqrt{l(l+1)}} \partial_\theta (Y_{lm}(\theta)) e^{im\phi} e^{-im\Omega t} + \frac{i\mu_0 m\Omega}{\sin\theta \sqrt{l(l+1)}} im Y_{lm}(\theta) e^{im\phi} e^{-im\Omega t} \\ B_\phi &= -\frac{\partial_r (r f_{lm}^B)}{r \sin\theta \sqrt{l(l+1)}} im Y_{lm}(\theta) e^{im\phi} e^{-im\Omega t} - \frac{i\mu_0 m\Omega}{\sqrt{l(l+1)}} \partial_\theta (Y_{lm}(\theta)) e^{im\phi} e^{-im\Omega t} \end{split}$$

Multipolar magnetic field outside neutron star


Terms with r dependence
Terms with (ϑ, φ) dependence
Terms with (I,m) dependence

I = 1: DipoleI = 2: QuadrupoleI = 3: Octopole

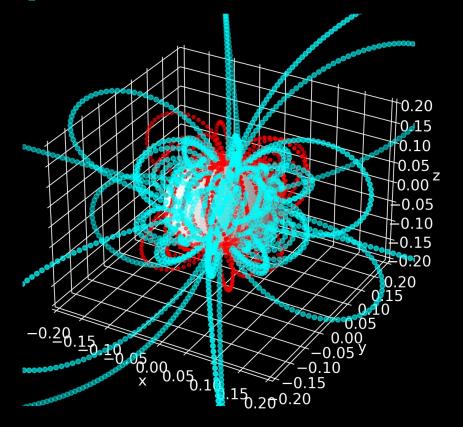

...

m = - I to I : different orientations for the corresponding multipolar component

$$\begin{split} B_r &= -\frac{\sqrt{l(l+1)}}{r} \int_{lm}^{B} Y_{lm}(\theta) e^{im\phi} e^{-im\Omega t} \\ B_\theta &= -\frac{\partial_r (r f_{lm}^B)}{r \sqrt{l(l+1)}} \partial_\theta (Y_{lm}(\theta)) e^{im\phi} e^{-im\Omega t} + \frac{i\mu_0 m\Omega}{\sin\theta \sqrt{l(l+1)}} im Y_{lm}(\theta) e^{im\phi} e^{-im\Omega t} \\ B_\phi &= -\frac{\partial_r (r f_{lm}^B)}{r \sin\theta \sqrt{l(l+1)}} im Y_{lm}(\theta) e^{im\phi} e^{-im\Omega t} - \frac{i\mu_0 m\Omega}{\sqrt{l(l+1)}} \partial_\theta (Y_{lm}(\theta)) e^{im\phi} e^{-im\Omega t} \end{split}$$

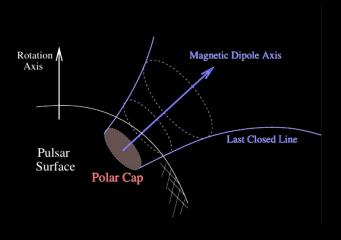
Retarded vs static field line geometry

Retarded vs static field line geometry


Retarded vs static field line geometry

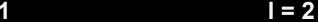
$$\frac{1}{n^{l+1}}$$
 dependence

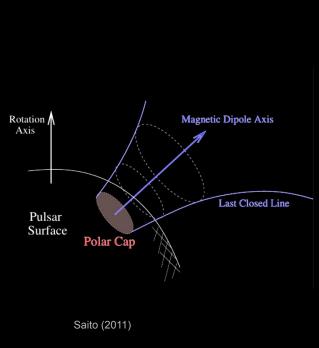
I = 2, 3 overlap

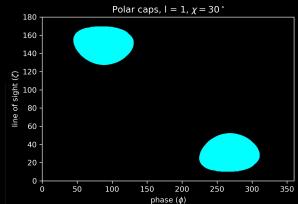

12 in cyan

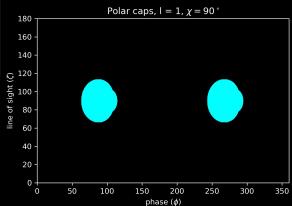
13 in red

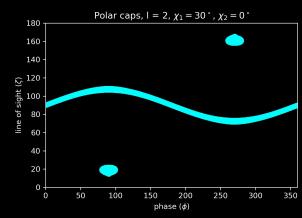
Close to the surface, higher components contribute

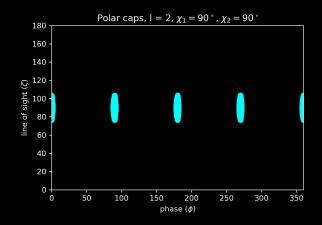

Testing multipolar field: Polar caps

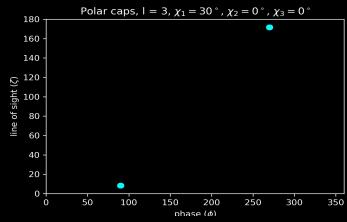


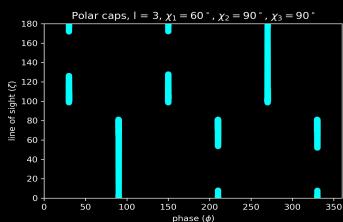

Saito (2011)

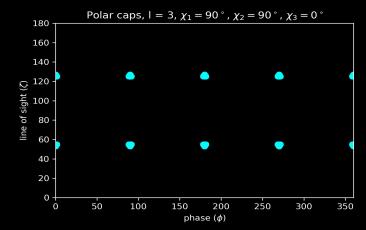

Testing multipolar field: Polar caps

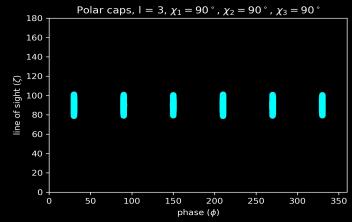











Testing multipolar field: Polar caps

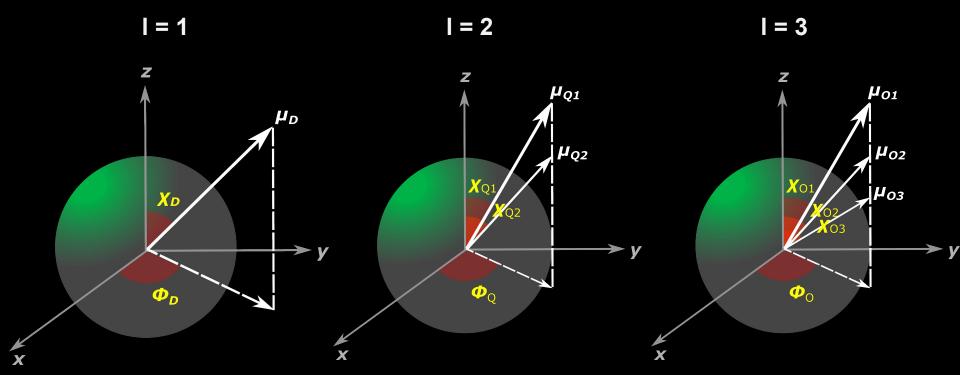
Methods

Retarded multipolar magnetic field

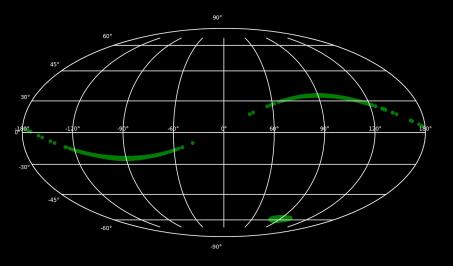
Geodesic Integration in Kerr Spacetime (GIKS) ray-tracing:

Find hotspots on the surface -> Produce corresponding light curve

MCMC: updated code from Kalapotharakos et al. (2021)

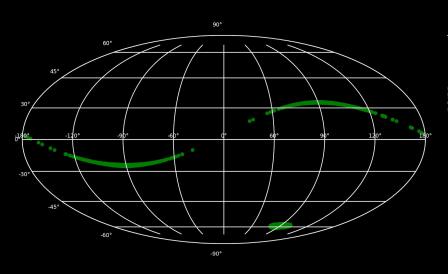

Kalapotharakos et al. (2021)	Current work
l1 + l2	l1 + l2 + l3
Static	Retarded
Offset	Centred (offset later)
11 parameters	11 parameters (6 up to I2)

Methods: MCMC parameter space

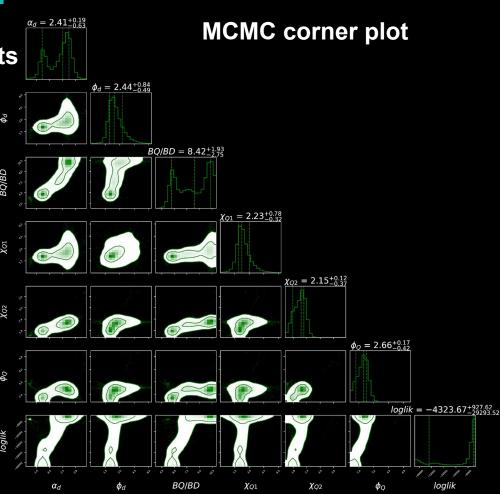

Phase - 3 parameters: φ_{D} , φ_{Q} , φ_{O}

Angular - 6 parameters: $X_{D_i} X_{Q1_i} X_{Q1_i} X_{O1_i} X_{O2_i} X_{O3_i}$

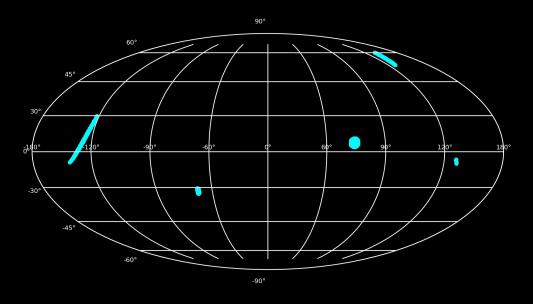
Field strength - 2 parameters: B_Q/B_D, B_O/B_D



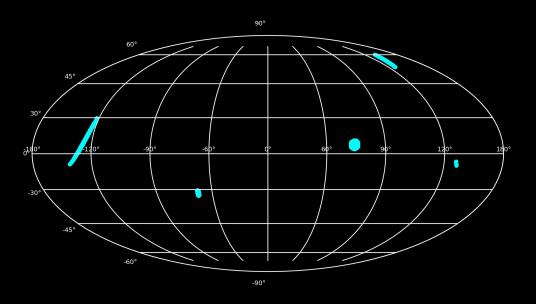
Mollweide projection showing hotspots



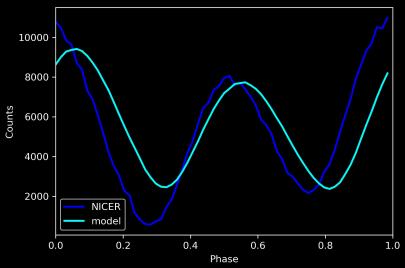
Low resolution


Mollweide projection showing hotspots

Low resolution Bimodal!

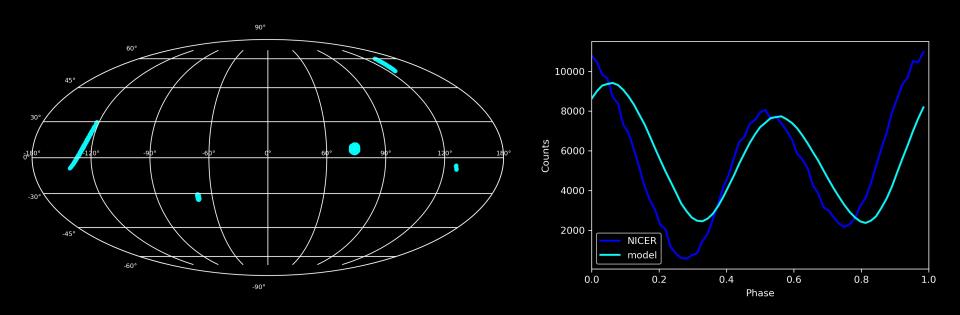


Mollweide projection showing hotspots



20 chains: 100 or 200 iterations Grid size: 1000x1000 grid or 800x800

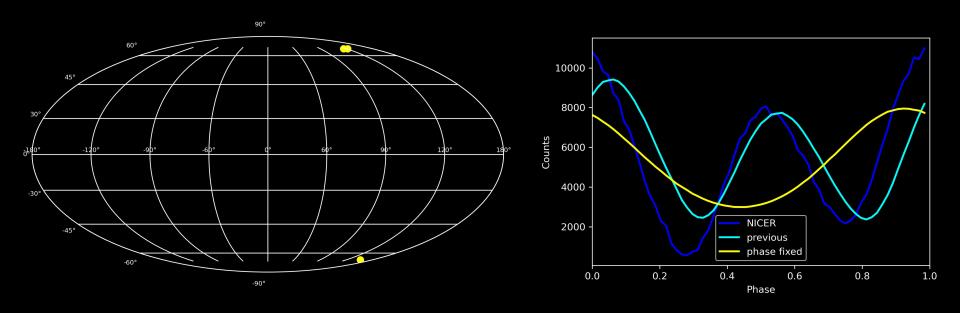
Mollweide projection showing hotspots


Light curve, model in cyan

20 chains: 100 or 200 iterations Grid size: 1000x1000 grid or 800x800

Mollweide projection showing hotspots

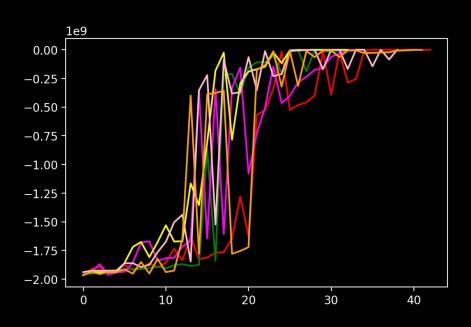
Light curve, model in cyan

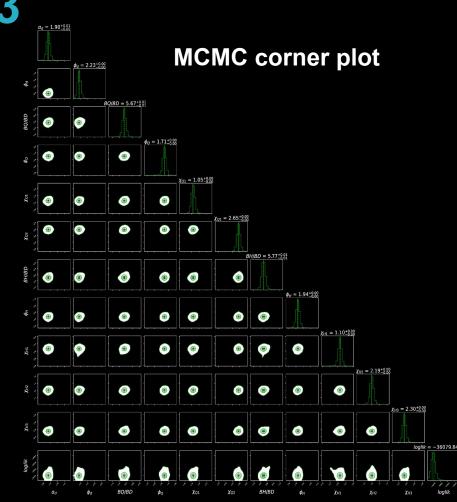


Incorrect phase transformation...

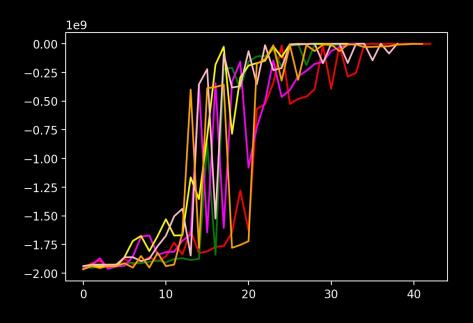
20 chains: 100 or 200 iterations Grid size: 1000x1000 grid or 800x800

Mollweide projection showing hotspots

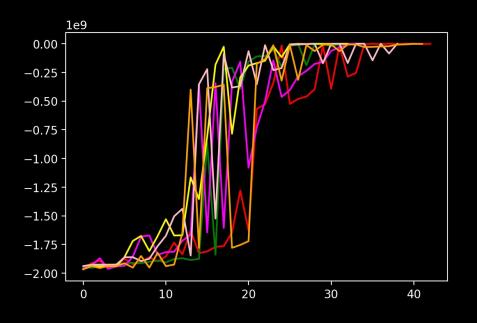

Light curve, model in cyan, yellow


Incorrect phase transformation...

After the fixes...


Trace plot for log-likelihood

Maximizing negative log-likelihood: For 50 steps, from order of billion to 1000

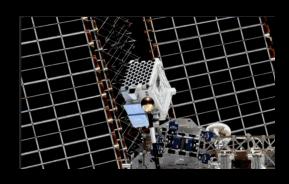

Trace plot for log-likelihood

Current focus:

- Number of iterations, runtime
- Decent set of initial conditions

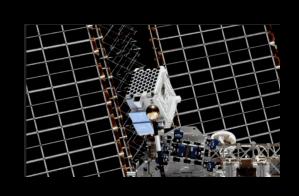
Trace plot for log-likelihood

Current focus:


- Number of iterations, runtime
- Decent set of initial conditions

Current limitations:

- Cluster resources, limits
- Loadshedding, resulting in longer queues


The full story...

Constraining the multipolar magnetic field of MSP J0030+0451 via *NICER* X-ray light curve fitting

The full story...

Constraining the multipolar magnetic field of MSP J0030+0451 via *NICER* X-ray light curve fitting

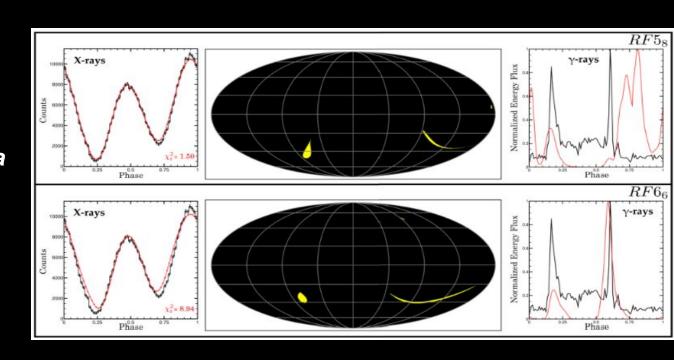
Constraining the multipolar magnetic field of MSP J0030+0451 via combined NICER X-ray and Fermi

gamma-ray light curve fitting

https://heasarc.gsfc.nasa.gov/docs/nicer/https://www.nasa.gov/sites/default/files/thumbnails/image/glap0588.jpg

The full story...

Yellow: Hotspots

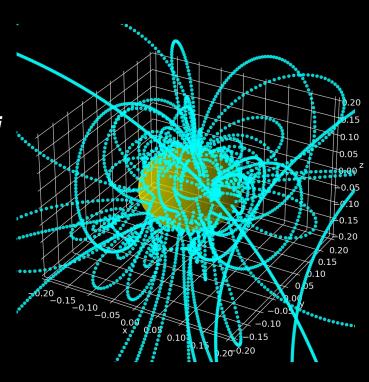

LCs:

Black: NICER/Fermi data

Red: Model

X-ray LCs: Field degeneracies

Gamma-ray LCs: Lifts the degeneracies


Summary and outlook

Now: Multipolar field + MCMC runs:

- Runtime optimization: Ideas?
- Constrain by simultaneous fitting with Fermi gamma-ray data: Degeneracies?
- Offset multipolar field

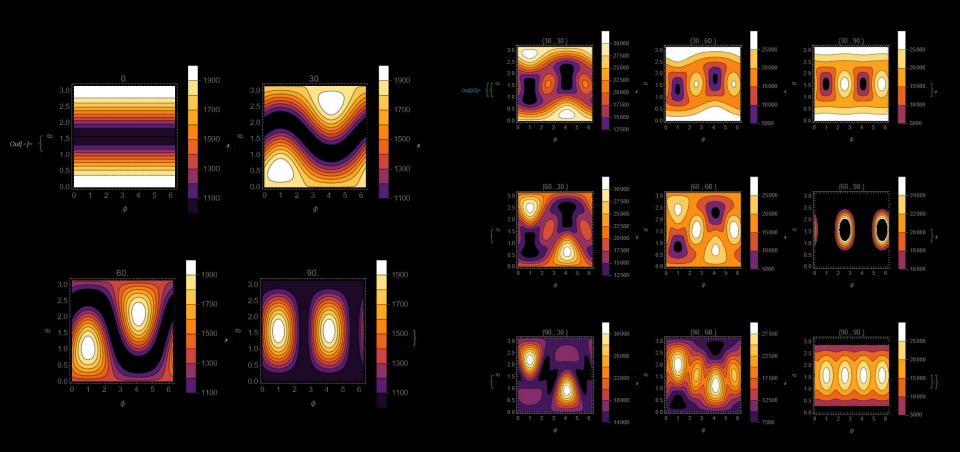
Next: Constraining equation of state:

- Self-consistent mass and radius determination
- Apply to other NICER MSPs

Thank you for your attention!

Anu Kundu*, North-West University

Can't think of any questions? Maybe you are curious about:


- "Normalization of the field strength of the different components?"
- "Difference from what NICER team is doing?"
- "Are you crazy enough to activate I4 and higher components?"
- "What is this... loadshedding?"
- (If you attended HEASA 2022:) "Updates on the lost peak...?" 5.

*anukunduo2@yahoo.com

Extra slides

Surface magnetic field for I = 1

Surface magnetic field for I = 2

