Gamma-ray emission of dwarf galaxies & globular clusters: The Sagittarius / M54 system

Fermi Symposium 2022

Addy J. Evans
Texas A&M University
with Louis Strigari, Pat Harding, Andrea Albert, Tim Linden, Dan
Hooper, and Oskar Svenborn

Gamma-ray emission of dwarf galaxies

→ There have been many studies of dwarf galaxies with the Fermi-LAT

Drlica-Wagner, 2013

Fermi-LAT Collaboration, 2014

Gamma-ray emission of dwarf galaxies

→ There have been many studies of dwarf galaxies with the Fermi-LAT

Fermi-LAT Collaboration, 2014

The Sagittarius dwarf spheroidal galaxy

- → Near the Galactic center & overlapping with structure in the Fermi bubbles
- → Undergoing tidal disruption
- \rightarrow ~ 26 kpc away
- → Population of globular clusters, including recently identified ones (Minniti et al, 2022)

Fermi detections of the Sgr/M54 system

- → Recently detected by the Fermi Collaboration (4FGL-DR3)
- \rightarrow TS of \sim 26
- → At the core of the Sagittarius dwarf spheroidal galaxy (Sgr)
- → Coincident with the globular cluster M54

M54 (credit: Hubble/NASA)

Possible sources of gamma-ray emission in Sgr

- → Point-like
- Gamma-rays from millisecond pulsar population in M54 and other globular clusters

- → Extended
- Dark matter annihilation in the dense
 DM core of Sgr
- Emission from an isotropically distributed population of millisecond pulsars

M54 (Hubble/NASA)

Dark matter substructure (Springel et al., 2008)

The gamma-ray emission of globular clusters

S.J. Lloyd et al., 2018

R.N. Manchester, 2017

The source of γ -ray emission in globular clusters

Two possible sources of emission:

1. Curvature or prompt radiation from millisecond pulsar magnetospheres (Harding et al., 2005)

2. Inverse Compton emission from leptons injected by millisecond pulsars into the surrounding environment (Bednarek & Sitarek, 2007)

- → Crocker et al. report a highly significant, extended source associated with Sgr
- → Attributed to the dwarf's millisecond pulsar population, with a high-energy component that is comparable to the low-energy component

Crocker et al., 2022

→ We find point-like emission from the core of the Sgr galaxy, in agreement with the 4FGL-DR3 catalog

→ Source is spatially coincident with the M54 globular cluster and the core of Sgr

 \rightarrow TS of \sim 23

AJE et al., in prep

→When using a two-component model, we find no evidence for a high-energy component with an ICS flux upper limit two orders of magnitude lower than the

detected flux

If the source is associated with M54...

→M54 is the furthest globular cluster detected by Fermi-LAT thus far

→ Other parameters agree with known gamma-ray bright globular cluster population

Dark matter interpretation of the emission

 \rightarrow Assuming a dark matter scenario, we derive a particle mass of \sim 30 GeV and annihilation cross-section of \sim 9 x 10⁻²⁶ cm³/s

Murgia 2020

AJE et al., in prep

→We search for other sources possibly associated with the Sgr/M54 system and find no substantial evidence for further sources

AJE et al., in prep

- → We search the Sgr/M54 system in Fermi data and find point-like emission associated with the core of the Sgr galaxy
- → This emission is possibly due to a millisecond pulsar population within the globular cluster M54
- → However, a dark matter interpretation is also possible
- ightarrow We find no evidence for high-energy emission from the catalog source, nor do we find any other sources possibly associated with Sgr
- → While basic extension models show preference for point-like emission, a more detailed analysis testing extension models is in prep

Extras

→When using a two-component model, we find no evidence for a high-energy component with an ICS flux upper limit two orders of magnitude lower than the detected flux

Two-component modeling of Terzan 5

