

Amar Aryan*

Shashi B. Pandey, WeiKang Zheng, Alexei V. Filippenko, Jozsef Vinko, Ryoma Ouchi et al. 2022. doi:10.1093/mnras/stac2326

*amar@aries.res.in and amararyan941@gmail.com

What are Supernovae (SNe)

- The bright explosions that mark the death of stars.
- Death of stars : Brief and Dynamic.
- Responsible for the enrichment of the universe.

Left behind are:

- SN remnant : Shell of the exploding star
- Birth of compact objects, eg.,
 Neutron Stars and Black Holes.

SN 2016gkg images from 3.6m DOT at ARIES

Well celebrated SNe Classification on the Basis of Spectra

Type IIb

Massive WRs / Extended YSG

Source: Maeda 2022

Why do few elements show strong presence or absence in particular SNe spectra???

SN 2016iyc: Spectral Properties

SN 2016iyc: Photometric Properties

Left: The BV RI- and C-band light curves of SN 2016iyc, obtained with **KAIT** along with the upper limits in each band using the **Las Cumbres Observatory** global telescope network, **Right:** Zooming in to early phases shows the generic extended-SBO feature of SNe IIb. **Source:** Aryan et al. 2022.

SN 2016iyc: Photometric Properties ...continued

Left: Comparison of the absolute V-band light curve of SN 2016iyc with similar SNe, Right: Comparison of the quasi-bolometric light curve of SN 2016iyc with similar SNe. Source: Aryan et al. 2022.

SN 2016iyc: Possible Progenitor Modelling using MESA¹

- Non-rotating, 9 14 M_a ZAMS stars as possible progenitors
- Sub-solar, solar and super-solar metallicities
- Models evolve from ZAMS upto the stage of core-collapse

¹https://docs.mesastar.org/

Chemical Compositions and Physical Properties of models at the beginning of core-collapse

Left: The mass fraction of various elements at the stage of the onset of core-collapse of a 12 M_o ZAMS progenitor. **Right:** The variation of core-temperature and core-density throughout the course of evolution upto core-collapse. **Source:** Aryan et al. 2022.

SN 2016iyc: Synthetic Explosions of Various Models Using SNEC¹ and STELLA²

Table 3. MESA model and STELLA/SNEC explosion parameters of various models for SN 2016iyc.

Model Name	$M_{ m ZAMS}$ $({ m M}_{\odot})$	Z	$M_{ m H}^a \ ({ m M}_{\odot})$	$R_0^b \ ({ m R}_{\odot})$	f^c_{ov}	$M_{ m f}^d \ ({ m M}_{\odot})$	$M_{ m ci}^e \ ({ m M}_{\odot})$	$M_{\mathrm{cf}}^f \ (\mathrm{M}_{\odot})$	$M_{ m ej}^g \ ({ m M}_{\odot})$	$M_{ m Ni}^h \ ({ m M}_{\odot})$	$\frac{E_{\rm exp}^i}{(10^{51}{\rm erg})}$
M12.0_Z0.0215_Mni0.02_E0.33	12.0	0.0215	0.035	596	0.007	3.96	1.54	1.54	2.42	0.02	0.33
M12.0_Z0.0185_Mni0.03_E0.35	12.0	0.0185	0.055	315	0.007	3.49	1.46	1.46	2.03	0.03	0.35
M12.0_Z0.0200_Mni0.025_E0.35	12.0	0.0200	0.05	300	0.007	3.45	1.52	1.52	1.93	0.025	0.35
M12.0_Z0.0200_Mni0.09_E0.35	12.0	0.0200	0.05	300	0.007	3.45	1.52	1.52	1.93	0.09	0.35
M13.0_Z0.0200_Mni0.024_E0.28	13.0	0.0200	0.04	204	0.007	3.79	1.64	1.90	1.88	0.024	0.28
M13.0_Z0.0200_Mni0.01_E0.32	13.0	0.0200	0.04	204	0.007	3.79	1.64	1.64	2.15	0.01	0.32
M13.0_Z0.0185_Mni0.02_E0.35	13.0	0.0185	0.06	318	0.007	3.92	1.53	1.56	2.36	0.02	0.35
M13.0_Z0.0215_Mni0.03_E0.40	13.0	0.0215	0.015	10	0.007	3.81	1.61	1.62	2.19	0.03	0.40
M14.0_Z0.0200_Mni0.03_E0.50	14.0	0.0200	0.03	55	0.007	4.23	1.54	1.54	2.69	0.03	0.50

^a Amount of hydrogen retained after stripping. ^bPre-SN progenitor radius. ^cOvershoot parameter. ^dFinal mass of pre-SN model. ^eInitial mass of the central remnant. ^fFinal mass of the central remnant. ^gEjecta mass. ^hNickel mass. ⁱExplosion energy.

Source: Aryan et al. 2022

²https://stellarcollapse.org/index.php/SNEC.html

³https://ascl.net/1108.013

SN2016iyc: Results of Synthetic Explosions

Source: Aryan et al. 2022

SN2016iyc: Outcomes of the Analyses

- SN 2016iyc lies near the faint end among the distribution of similar supernovae.
- The progenitor modelling using MESA and the synthetic explosions using SNEC and STELLA shows:
 - 1. SN 2016iyc rises from a ZAMS progenitor of mass (12 13) M_{\odot} .
 - 2. The progenitor has a pre-supernova radius of (240 300) R_{\odot} .
 - 3. SN 2016iyc has an ejecta mass of (1.89 1.93) M_{\odot}.
 - 4. SN 2016iyc has an explosion energy of $(0.28 0.35) \times 10^{51}$ erg.
 - 5. SN 2016iyc synthesized no more than 0.09 M of Nickel mass.

Amar Aryan*

