

Stefan Wagner, LSW, ZAH, U. Heidelberg*

Faical Ait-Benkhali, LSW, ZAH, U. Heidelberg

Gamma-ray astrometry

Gamma-ray astronomy (MeV-TeV) does not employ focusing optics.

Poor directional reconstruction of individual photons →
poor angular resolution → poor astrometry (VHE: systematics).

Variability → very high angular resolution (no astrometry)

Astrometric studies of the Crab

Yeung & Horns, ApJ 875, 123 (2019): 9 years of LAT data, E > 5 GeV

Crab: Extension

Yeung & Horns, ApJ 875, 123 (2019): 9 years of LAT data, E > 5 GeV Energy dependent morphology (see H.E.S.S. collaboration, 2019, Nat. Ast. 476)

Caveats: single component (Mkn 421-like PSF)

Crab center(s)

Extension of the Crab beyond PSF

- → astrometrometric comparisons
- → repeat Ackermann et al., 2013 (Fermi-LAT, arXiv: 1309.5416)

4 energy bins above 1 GeV, all times Here: PSF3 SOURCE

All centroids offet from Crab pulsar Non-monotonous shift with energy. Uncertainty driven by N_{photon}.

Cross-check astrometry

Results have been cross-checked in several ways:

Splitting the whole data set in 2 by time (2008-2015, 2015-2022);

Gaussian/disk convolutions with PSF;

Different photon quality Quality vs. photon statistics → astrometry;

Comparisons to AGN (as has been done by most astrometry/PSF studies).

Photon classes 37-136 GeV

Crab center(s)

Further Tests:

Neighboring sources (e.g. Geminga) No significant shifts of centroids with E.

Oversampling energy bins ← (non-monotoneous shift).

Model of Gaussian components, Convolution, background, sampling and reconstruction or results. → consistency

2 components

In the 1-10 GeV and 10-37 GeV bands the Crab pulsar dominates the total flux → and the centroids.

Gamma-PWN dominates >100 GeV.

Decomposition

Astrometric decomposition possible. Two-component-fit required. Pulsar position/PSF constraints.

VHE Extension

Highest energy bands contain little contamination from pulsar.

→ 2-component fit not preferred.

Offset from pulsar least significant

Extension highly significant.

Elongation marginally significant.

Elongation not along the torus.

Extension of two-component model

Extension in single component fit is affected by the spatial offset from the pulsar. - increasing?

Nonetheless, two component fits in energy bands < 40 GeV yield a *larger* extension of the Crab nebula resulting in an energy dependent size, matching expectations on electron aging.

Crab Flares

Over short periods of time (~days), the 100 MeV – 10 GeV flux increases by up to a factor of 10. The origin of flares is unclear. Astrometric localisation?

→ no shift found in combined data-set from 8 flares.

→ Simulation (PSF at pulsar location, X-ray maximum) does not lead to significant astrometric differences. → Fermi go on!

backup

diagrams

