

High energy emission component and population of gamma-ray emitting radio galaxies

Yasushi Fukazawa (Hiroshima U.)

Collaborators: Yoshiyuki Inoue (Osaka U.),

<u>Hiroto Matake, Taishu Kayanoki</u> (Hiroshima U.),

Justin Finke (NRL)

Fukazawa et al. 2022, ApJ 931m 131

fukazawa@astro.Hiroshima-u.ac.jp

Radio galaxies established as a gamma-ray source thought to be a parent population of blazars more numerous than blazars

Open Questions for GeV-loud radio galaxies

Luminosity Function (LF)?

Contribution to Extragalactic gamma-ray bgd?

How about SED is from X-ray to gamma-ray?

Population?

FR-I rich? FR-II rich?

GeV-loud vs GeV-quiet?

Relation with Blazars?

4th Fermi Catalog (4FGL-DR2): Misaligned AGN (61 galaxies)

X-ray data

We searched for X-ray data with a priority order of XMM-Newton, Chandra, Swift, RASS. 8 bright objects are from Fukazawa+15 Suzaku results..

XMM-Newton	20
Chandra	14
Swift	9
NuSTAR	1
RASS	5
XMM slew	1
Suzaku	7
No X-ray data	4

Fitted with powerlaw to obain a photon index and flux.

RDG

AGN

CSS/SSRQ

SED analysis from X-ray to GeV gamma-ray

Fitted X-ray and gamma-ray spectra with 4-th polynomial function.

Correlation of luminosity between X-ray and GeV.

X-ray L iroughly correlates with GeV L.

FR-II is not always bright.
CSS/SSRQ are the brightest in both X-ray and GeV.

Synchrotron Peak (from 4LAC(-DR2)

Note that SED in IR, Opt, and X-ray could be contaminated by non-jet emissions.

H.E. component peak (from SED fit)

Toward high L SED

Wide dist. of peak frequency, and blazar-like seq. is seen.

Correlation of luminosity between Sync-peak and H.E. peak.

Compton dominance of RGs is similar to or less than that of BL Lac.

Population (1)

GeV radio galaxies are 10—30 times as numerous as blazars.

 $\leftarrow \rightarrow$ Viewing angle of blazars is 0-10deg.

Only 10% of 2 Jy flux-limited radio-sample RG (Mingo+14) are detected in GeV.

Considering a beaming effect, only a small fraction of RGs with a viewing angle <24deg are seen in GeV ? (Inoue 11), consistent with less soft X-ray absorption of GeV RG

(Kayanoki+22) Predicted number of GeV radio galaxies SRQp2 BLAZAR0 BL Lac 10⁷ **FSRQ** BLAZAR 10^{6} dN/dz **Radio** Galaxy 10^{3} 10^{2} blazar FSRQ 10 10⁻³ 10⁻² Redshift

Population (2)

 $FR-I/FR-II \leftarrow \rightarrow BL Lac/FSRQ$

Blazar seq of H.E. emission component is common.

No FR-II with as large Compton dominance can be due to difference of beaming pattern between external Compton and SSC (Finke+13).

Some FR-lis may correspond to BL Lac (LBL)?

Population (3)

35 FR-I vs 17 FR-II in GeV FR-Iis are lacking.
6 FR-I vs 33 FR-II in radio flux-limited (Dicken+18).
80% of X-ray RGs are FR-II (80%) (Rusinek+20).

H.E. component peak freq. is lower for FR-II. → soft GeV spectrum
 SED of many FR-II could not reach GeV.
 Beaming is more significant for FR-II while FR-I is less due to structured jet.

GeV gamma-ray luminosity function of radio galaxies

Negative evolution in nearby universe

Many low-power gamma-ray L galaxies exit in low-z.

FR-Os (Paluya+21)

Parent population of elliptical-like blazars? (Itoh+20)

Emission other than the core jet; (e.g. Cen-A kpc jet by HESS)

Contribution of GeV-loud RG to the EGB

1-10% contribution of GeV-loud RG.

Many GeV-quiet FR-II RGs could contribute to the MeV EGB.

Conclusion

GeV-loud RG has a blazar-like Sequence on H.E. SED.

GeV-loud RG is a small part of radio-loud RG; only beamed ones are seen in GeV.

FR-I/II vs BL Lac/FSRQ correspondence is consistent with our results.

FR-II is lacking in GeV; H.E. SED peak freq. is lower. Many GeV-undetected FR-Iis are there.

Possible significant contribution to MeV gamma-ray background

GeV-loud RG has a negative evolution in nearby universe.