MASSR SRHCE SOUENE PHOCRAMME

SHAKEN, NOT STIRRED: TEST PARTICLES IN BINARY-BLACKHOLE MERGERS

North-West University Centre for Space Research
Pieter vd Merwe
Supervisor: Prof. M. Boettcher

AIMS

To develop exploratory code to simulate the acceleration and spectral energy distribution of any resulting EM-radiation from charged particles accelerated only due to gravity in inspiraling binary black hole (BBH) merger environments.

Simplifying assumptions?

- Eccentricity of the BBH orbits are circular
- The BHs are non-rotating and uncharged
- The orbits of the BHs are determined using a $1^{\text {st }}$ order PN effective one-body problem
- Low particle density close to stellar mass BBH (accretion disk dynamics can be neglected)

BUILDING THE MODEL What do we need?

$>$ Some Newtonian-like potential to determine the dynamics of the particle
>Paczynski-Wiita potential
\Rightarrow Time dependent positions of BHs
$>$ BHs are in motion $=>$ Potentials evaluated at retarded position
$>$ Momentum and Force equations with which to model the dynamics of the particles
$>$ Numerical solver to calculate the Dynamics ODEs
$>$ A way to calculate the SED from the Numerically calculated \vec{a}-components

BUILDING THE MODEL paczynski-WIITA Potential

For a preliminary look at the possible accelerations of test particles in a BBH system, we use the pseudo-Newtonian Paczynski-Wiita potential:

$$
\Phi_{P W}=-\frac{G M}{r-r_{s}}, \text { with } r_{s}=\frac{2 G M}{c^{2}}
$$

$>$ Exactly reproduces the position of marginally bound and marginally stable circular orbit \& form of the Keplerian angular momentum of a Schwarzschild BH
$>$ Orbits are expected to be more chaotic than fully relativistic case for radii $<6 r_{G}$

BUILDING THE MODEL POSITION OF BBH

- Time dependent description of BBH motion
- Classical effective one-body problem

BUILDING THE MODEL
 POSITION OF BBH (...THEN)

- Time dependent description of BBH motion
- Classical effective one-body problem
- Replace $M_{1} \& M_{2}$ with $\mu=\frac{M_{1} M_{2}}{M_{1}+M_{2}}$

$$
\& M=M_{1}+M_{2}
$$

- Solve using Lagrangian mechanics
$-\vec{r}_{1}=\binom{\frac{M_{2} P_{\phi}^{2}}{\mu G M^{2}} \cos \left(\frac{\mu G^{2} M^{2}}{P_{\phi}^{3}} t\right)}{\frac{M_{2} P_{\phi}^{2}}{\mu G M^{2}} \sin \left(\frac{\mu G^{2} M^{2}}{P_{\phi}^{3}} t\right)} \quad \vec{r}_{2}=-\binom{\frac{M_{1} P_{\phi}^{2}}{\mu G M^{2}} \cos \left(\frac{\mu G^{2} M^{2}}{P_{\phi}^{3}} t\right)}{\frac{M_{1}^{2} P_{\phi}^{2}}{\mu G M^{2}} \sin \left(\frac{\mu G^{2} M^{2}}{P_{\phi}^{3}} t\right)}$

BUILDING THE MODEL
 POSITION OF BBH (...NOW)

- Time dependent description of BBH motion
- Classical effective one-body problem
- Replace $M_{1} \& M_{2}$ with $\mu=\frac{M_{1} M_{2}}{M_{1}+M_{2}}$

$$
\& M=M_{1}+M_{2}
$$

- Take into account the energy loss due to GW to obtain 1 PN accurate equations for the BHs

$$
\begin{aligned}
R(\tau) & =R_{0}\left(\frac{\tau}{\tau_{0}}\right)^{1 / 4} \\
& =R_{0}\left(\frac{t_{\text {coal }}-t}{t_{\text {coal }}-t_{0}}\right)^{1 / 4}
\end{aligned}
$$

$$
\Phi(\tau)=-2\left(\frac{5 G M_{c}}{c^{3}}\right)^{-5 / 8} \tau^{5 / 8}
$$

BUILDING THE MODEL retarded time

To account for the motion of the BH , the implicit definition of retarded time is used

$$
t_{r}=t-\frac{1}{c}\left|\vec{r}-\vec{r}_{B H}\left(t_{r}\right)\right|
$$

Using the position equations for each BH as a function from the EOB problem, we can solve this numerically using Newton's method

$$
\begin{gathered}
t_{r, n+1}=t_{r, n}-\frac{f\left(t_{r, n}\right)}{f^{\prime}\left(t_{r, n}\right)} \\
f\left(t_{r, n}\right)=t-\frac{1}{c}\left|\vec{r}-\vec{r}_{B H}\left(t_{r, n}\right)\right|-t_{r, n}
\end{gathered}
$$

BUILDING THE MODEL
 determining the position and acceleration evolution of a particle through the SYSTEM

$>$ The evolution of the position of a particle orbiting in the system is found by simultaneously solving the following set of coupled ODEs using the RKF7(8) adaptive time-step method, with upper and lower limits on the time step size:

$$
\begin{gathered}
\frac{\mathrm{d} \vec{p}}{\mathrm{~d} t}=-\vec{\nabla}\left[\Phi_{P W, 1}\left(t_{r, 1}, \vec{r}\right)+\Phi_{P W, 2}\left(t_{r, 2}, \vec{r}\right)\right] \\
\frac{\mathrm{d} \vec{r}}{\mathrm{~d} t}=\frac{\vec{p}}{m_{e}} \sqrt{1-\frac{p^{2}}{m_{e}^{2}}\left(1+\frac{p^{2}}{m_{e}^{2}}\right)^{-1}}
\end{gathered}
$$

where we stop the solver once the particles plummets into a BH or the BH s get too close to one another.
$>$ The acceleration of the particle as a function of time is found using

$$
\vec{a}_{i}=\frac{1}{m_{e} \gamma_{i}}\left[\vec{F}\left(t_{t, i}\right)-\frac{\left(\vec{v}_{i} \cdot \vec{F}\left(t_{r, i}\right)\right)}{c^{2}} \vec{v}_{i}\right]
$$

BUILDING THE MODEL
 CalCULATING THE SED

\Rightarrow SED of each particle in the system is calculated by

$$
I(\nu)=\frac{\mu_{0} q^{2}}{3 \pi c}\left[\left|\gamma^{2} \vec{a}_{\|}(\nu)\right|^{2}+\left|\gamma^{3} \vec{a}_{\perp}(\nu)\right|^{2}\right]
$$

$>$ A non-uniform Fourier transform is applied to the components of the acceleration parallel and perpendicular to the direction of motion using the fiNUFFT library.
$>$ Total SED from the system is calculated from: $\quad I_{\text {Total }}(\nu)=\sum_{\text {particles }} I_{n}(\nu)$

PDue to variable lengths of the generated data, it is necessary to use cubic spline methods to calculate the total SED.

EXAMPLE TRAJECTORIES

- BBH separation: $10^{8} \mathrm{~cm}$
- $M_{1}: 30 M_{\odot}$
- $M_{2}: 35 M_{\odot}$
- 50 Particles Randomly distributed

EXAMPLE SPEED AND ACCELERATION COMPONENTS

@ NWU

EXAMPLE TOTAL SED

- BBH separation: $10^{8} \mathrm{~cm}$
- $M_{1}: 30 M_{\odot}$
- $M_{2}: 35 M_{\odot}$
- 50 Particles Randomly distributed
- Steep drop-off at $10^{8} \mathrm{~Hz}$

FINAL REMARKS AND CAVEATS

$>$ This is a very naïve, single particle approach simulation.
$>$ It is expected that EM fields will dominate over gravitational effects in these systems.
$>$ More work still needs to be done to determine how much of the predicted spectrum could actually be detected. 9th-15th October 2022

Thank you for your attention!

Pieter vd Merwe

