

SHAKEN, NOT STIRRED: TEST PARTICLES IN BINARY-BLACK-HOLE MERGERS

North-West University Centre for Space Research

Pieter vd Merwe

Supervisor: Prof. M. Boettcher

AIMS

To develop exploratory code to simulate the acceleration and spectral energy distribution of any resulting EM-radiation from charged particles accelerated only due to gravity in inspiraling binary black hole (BBH) merger environments.

Simplifying assumptions?

- Eccentricity of the BBH orbits are circular
- The BHs are non-rotating and uncharged
- The orbits of the BHs are determined using a 1st order PN effective one-body problem
- Low particle density close to stellar mass BBH (accretion disk dynamics can be neglected)

BUILDING THE MODEL WHAT DO WE NEED?

- Some Newtonian-like potential to determine the dynamics of the particle
 - ➤ Paczynski-Wiita potential
 - Time dependent positions of BHs
 - \triangleright BHs are in motion => Potentials evaluated at retarded position
- Momentum and Force equations with which to model the dynamics of the particles
- Numerical solver to calculate the Dynamics ODEs
- \triangleright A way to calculate the SED from the Numerically calculated \vec{a} -components

BUILDING THE MODEL PACZYNSKI-WIITA POTENTIAL

For a preliminary look at the possible accelerations of test particles in a BBH system, we use the pseudo-Newtonian Paczynski-Wiita potential:

$$\Phi_{PW} = -\frac{GM}{r - r_s}$$
, with $r_s = \frac{2GM}{c^2}$,

- Exactly reproduces the position of marginally bound and marginally stable circular orbit & form of the Keplerian angular momentum of a Schwarzschild BH
- \triangleright Orbits are expected to be more chaotic than fully relativistic case for radii $<6r_G$

BUILDING THE MODEL POSITION OF BBH

- Time dependent description of BBH motion
 - Classical effective one-body problem

BUILDING THE MODEL POSITION OF BBH (... THEN)

- Time dependent description of BBH motion
 - Classical effective one-body problem

• Replace
$$M_1 \& \ M_2$$
 with $\mu = \frac{M_1 M_2}{M_1 + M_2}$ $\& \ M = M_1 + M_2$

Solve using Lagrangian mechanics

$$\mathbf{\vec{r}}_{1} = \begin{pmatrix} \frac{M_{2}P_{\phi}^{2}}{\mu GM^{2}}\cos\left(\frac{\mu G^{2}M^{2}}{P_{\phi}^{3}}t\right) \\ \frac{M_{2}P_{\phi}^{2}}{\mu GM^{2}}\sin\left(\frac{\mu G^{2}M^{2}}{P_{\phi}^{3}}t\right) \end{pmatrix} \mathbf{\vec{r}}_{2} = -\begin{pmatrix} \frac{M_{1}P_{\phi}^{2}}{\mu GM^{2}}\cos\left(\frac{\mu G^{2}M^{2}}{P_{\phi}^{3}}t\right) \\ \frac{M_{1}P_{\phi}^{2}}{\mu GM^{2}}\sin\left(\frac{\mu G^{2}M^{2}}{P_{\phi}^{3}}t\right) \end{pmatrix}$$

POSITION OF BBH (...NOW)

- Time dependent description of **BBH** motion
 - Classical effective one-body problem
 - Replace M_1 & M_2 with $\mu = \frac{M_1 M_2}{M_1 + M_2}$ & $M = M_1 + M_2$
 - Take into account the energy loss due to GW to obtain 1PN accurate equations for the BHs

$$R(\tau) = R_0 \left(\frac{\tau}{\tau_0}\right)^{1/4}$$
$$= R_0 \left(\frac{t_{\text{coal}} - t}{t_{\text{coal}} - t_0}\right)^{1/4}$$

$$R(\tau) = R_0 \left(\frac{\tau}{\tau_0}\right)^{1/4} \\ = R_0 \left(\frac{t_{\text{coal}} - t}{t_{\text{coal}} - t_0}\right)^{1/4} \qquad \Phi(\tau) = -2 \left(\frac{5GM_c}{c^3}\right)^{-5/8} \tau^{5/8}$$

RETARDED TIME

To account for the motion of the BH, the implicit definition of retarded time is used

$$t_r = t - \frac{1}{c} |\vec{r} - \vec{r}_{BH}(t_r)|$$

Using the position equations for each BH as a function from the EOB problem, we can solve this numerically using Newton's method

$$t_{r,n+1}=t_{r,n}-\frac{f\left(t_{r,n}\right)}{f'\left(t_{r,n}\right)}$$

$$f(t_{r,n}) = t - \frac{1}{c} |\vec{r} - \vec{r}_{BH}(t_{r,n})| - t_{r,n}$$

DETERMINING THE POSITION AND ACCELERATION EVOLUTION OF A PARTICLE THROUGH THE SYSTEM

The evolution of the position of a particle orbiting in the system is found by simultaneously solving the following set of coupled ODEs using the RKF7(8) adaptive time-step method, with upper and lower limits on the time step size:

$$rac{\mathrm{d} ec{p}}{\mathrm{d} t} = -ec{
abla} \left[\Phi_{PW,1} \left(t_{r,1}, ec{r}
ight) + \Phi_{PW,2} \left(t_{r,2}, ec{r}
ight)
ight]
onumber \ rac{\mathrm{d} ec{r}}{\mathrm{d} t} = rac{ec{p}}{m_e} \sqrt{1 - rac{p^2}{m_e^2} \left(1 + rac{p^2}{m_e^2}
ight)^{-1}}
onumber$$

where we stop the solver once the particles plummets into a BH or the BHs get too close to one another.

The acceleration of the particle as a function of time is found using

$$ec{a_i} = rac{1}{m_e \gamma_i} \left[ec{F}\left(t_{t,i}
ight) - rac{\left(ec{v_i} \cdot ec{F}\left(t_{r,i}
ight)
ight)}{c^2} ec{v_i}
ight]$$

CALCULATING THE SED

>SED of each particle in the system is calculated by

$$I(\nu) = \frac{\mu_0 q^2}{3\pi c} \left[\left| \gamma^2 \vec{a}_{\parallel} \left(\nu \right) \right|^2 + \left| \gamma^3 \vec{a}_{\perp} \left(\nu \right) \right|^2 \right]$$

- A non-uniform Fourier transform is applied to the components of the acceleration parallel and perpendicular to the direction of motion using the fiNUFFT library.
- Total SED from the system is calculated from: $I_{Total}(\nu) = \sum_{particles} I_n(\nu)$
- Due to variable lengths of the generated data, it is necessary to use cubic spline methods to calculate the total SED.

EXAMPLE TRAJECTORIES

• BBH separation: $10^8 cm$

• M_1 : 30 M_{\odot}

• *M*₂: 35*M*_⊙

• 50 Particles Randomly distributed

EXAMPLE SPEED AND ACCELERATION COMPONENTS

EXAMPLE TOTAL SED

• BBH separation: $10^8 cm$

• M_1 : 30 M_{\odot}

• *M*₂: 35*M*_⊙

- 50 Particles Randomly distributed
- ullet Steep drop-off at $10^8 Hz$

FINAL REMARKS AND CAVEATS

- > This is a very naïve, single particle approach simulation.
- ➤ It is expected that EM fields will dominate over gravitational effects in these systems.
- More work still needs to be done to determine how much of the predicted spectrum could actually be detected.

Pieter vd Merwe

