Analysing the orbital solutions of the gamma-ray binary HESS J0632+057 with new radial velocity measurements from SALT

10th Fermi Symposium 11 October 2022

N Matchett, B van Soelen, RO Gray

- Malyshev/Tokayer/Chen/Kim et al. solution's disagree with existing radial velocity data
- Casares et al. solution (P = 321d) incompatible with the Moritani et al. solution (P = 313d)
 - Casares used absorption lines :D But have a larger scatter :
 - Moritani used $H\alpha$ emission lines:/ But have a smaller scatter:)
- Interpretation of the X-ray/TeV emission discordant with the *geometry of the system*

independent radial velocity measurements (emission + absorption features!)	

Long-term monitoring with the HRS on SALT

- Obtained (ongoing) 8 high resolution echelle spectra between Dec 2020—Feb 2022 with SALT, HRS in HR mode
- Spectra preprocessed:
 - Reduced through HRS pipeline
 - Orders remerged, sky subtracted, continuum corrected & normalized
 - Corrected to the heliocenter

^{*[}RV measured for absorption lines are relative to the template – systematic velocity for the template was measured from the shift of the H β and H γ emission lines on the template]

[we only display the average of the emission (open circles) and absorption lines (squares) for simplicity]

[we only display the **average** of the emission (open circles) and absorption lines (squares) for simplicity]

Updated radial velocity solution ($H\alpha$ lines, P= 317.3 days)*

[*we have made use of publically available radial veloctiy measurements of the $H\alpha$ emission lines reported by Moritani et al. 2018]

Updated radial velocity solution ($H\alpha$ lines, P= 317.3 days)*

[*we have made use of publically available radial veloctiy measurements of the $H\alpha$ emission lines reported by Moritani et al. 2018]

Updated radial velocity solution ($H\alpha$ lines, P=317.3 days)*

[*we have made use of publically available radial veloctiy measurements of the $H\alpha$ emission lines reported by Moritani et al. 2018]

Concluding remarks

- Obtaining an orbital solution through optical observations! is very important to understand the physics within this system
 - Continued monitoring of the optical companion will provide further phase coverage with an emphasis around periastron
 - -> Increased data around periastron will help to provide an improved/updated orbital solution

Thank you!

Backup slides

Radial Velocity Method

The star and planet orbit their common center of mass.

$$v_{rad} = c \frac{\left(\left(\frac{\lambda_{obs} - \lambda_{rest}}{\lambda_{rest}} + 1 \right)^{2} - 1 \right)}{\left(\left(\frac{\lambda_{obs} - \lambda_{rest}}{\lambda_{rest}} + 1 \right)^{2} + 1 \right)}$$

Radial velocity fitting

Feature	Red_Chi2_Mor	Red_Chi2_Cas
Ηα	12.1539	1239.7196
Нβ	23.3824	6514.0046
Нγ	12.2111	258.2389
AVE_emission	18.2120	7982.4277
He I λ4118	23.4953	34.7106
He I λ4142	61.1020	48.0098
Не I λ4389	43.3374	181.0489
S II λ4647	183.0354	329.1531
He I λ5047	76.4246	116.1346
AVE_absorption	6.0894	26.8149

[we only display the **average** of the emission (open circles) and absorption lines (squares) for simplicity]