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Models for Blazar Jets

Image Credit: IPAC CalTech

• Homogeneous, one-zone leptonic and 
leptohadronic models


• “Low” injection energy

• Self-consistent: if a process appears in the SED, 

it also appears in the particle transport equation
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Particle Acceleration Mechanisms:
1st & 2nd Order Fermi Interactions

Particles gain energy from shock crossings in proportion to 
the energy they already have, and can pass through a shock 
region multiple times

Fermi I:

Shock Acceleration (+) & Adiabatic Expansion (-)

Particles always gain energy from stochastic 
scatterings in the head-on approximation due to 
the bulk motions in the jet.

Fermi II:

Hard-Sphere Scattering off of Stochastic 

MHD Waves



Particle Energy Loss Mechanisms: 
Synchrotron, Inverse Compton, Photo-pion Cascade

4Illustration: CXC/S. Lee

photon
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• Both electrons and protons 
populations can cool through 
synchrotron radiation.


• The rate of synchrotron cooling 
depends on the strength of the 
magnetic field.

Abdo et al. 2011 (Mrk 421)

higher-energy 
photon

• Compton cooling describes 
the high-frequency SED 
bump in the leptonic 
picture.


• The Compton cooling rate 
depends on the energy 
density of the ‘low-energy’ 
photon field

p

γ
π+

π+

νμ

νμ

νe

e−e−

νe

p
n

• Photo-pion production 
contributes to cooling for the 
proton population


• It also has the potential to 
produce observable 
neutrinos, but I will not be 
showing neutrino spectra 
today.

Illustration: CXC/S. Lee Illustration adapted from: 
Jonas Heinze



Fokker-Planck Electron Transport Equation

Lewis, Becker & Finke (2016)

InjectionEscape
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• N is the number of electrons with 
respect to the electron Lorentz 
factor.


• This version of the equation can 
be solved analytically, although 
generally I employ a more 
accurate accounting of the 
inverse Compton processes.


• An analogous equation is solved 
for the proton population. 



A Simplified Analytic Electron Distribution with 
Explicit Physics

• Orange: balance between 
Fermi I and Fermi II terms


• Green: dominated by Fermi II 
acceleration


• These components of the 
analytic solution are NOT 
separable
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Lewis et al. (2019)
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How Acceleration Processes Impact Spectral Features
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Fermi-I (shock) acceleration:

As red intensifies, the shock increases

Fermi-II (stochastic) acceleration

As blue intensifies, Fermi-II increases

Lewis, Finke, & Becker (2018)

The black spectrum is the same in both panels. 7



Particle Energy Distributions Impact Spectra

Lewis, Finke, & Becker (2018)

The spectral shape is dictated in 
part by the shape of the particle 

spectrum.

Particles accumulating at higher 
energies lead to sharper peaked 

spectra.
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Historical TXS 0506+056 Data

9

•Comparison to historical data to constrain the base-line parameter space 

•It is only necessary to change a single parameter to illustrate this range of data 

•B is varied from 0.5 to 1.2 G

arXiv:2111.10600; submitting to ApJ)



TXS 0506+056 Data: the 2014-2015 Neutrino Flare
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•Comparison of the FSRQ leptonic model to 
multiwavelngth flare data


•The model is tuned such that external 
Compton dominates in the γ-rays. 

•Comparison of the BLL leptonic model to 
multiwavelngth data 


•The model is tuned such that synchrotron 
self-Compton dominates in the γ-rays. 

arXiv:2111.10600; submitting to ApJ; Data: Rodrigues et al. 2019



2014 Neutrino Flare MeV Spectra for AMEGO-X
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In the figure:

•Fermi LAT data is in green

•Simulated AMEGO-X data in red & 
peach


•3 leptohadronic models representing 
different dominant emission 
processes. 


•Purple is Inverse Compton

•Blue is hadronic cascades

•Tan is 2 zones with coronal gamma-
gamma absorbed cascade emission 
in the MeV, but inverse Compton in 
the GeV


AMEGO-X would have detected the tan 
model or ruled it out through non-detection.(arxiv:2208.04990; accepted to JATIS)

arXiv:2111.10600; submitting to ApJ)



COSI Will Also Observe Blazars
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The purple box, containing the peak of 
the tan model, is COSI’s sensitivity 
band.

•COSI is a large field of view 0.2-5 MeV 
gamma-ray satellite mission planned 
for launch in 2026 (Tomsick et al., 
arXiv:1908.04334, arXiv:2109.10403)


•COSI is expected to detect flares from 
~35 blazars/year & a correlation study 
with IceCube events is planned

arXiv:2111.10600; submitting to ApJ)



Questions?
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