ExHaLe-jet: An extended hadro-leptonic jet model for blazars

Michael Zacharias, Anita Reimer, Catherine Boisson, Andreas Zech

Landessternwarte, Universität Heidelberg, Heidelberg, Germany Centre for Space Research, North-West University Potchefstroom, South Africa

10th International Fermi Symposium Oct 9-15, 2022

Figure 1: MWL image of Centaurus A with H.E.S.S. emission overlaid HESS+20

- Blazars are well described through the one-zone model
- Noteworthy counter-examples are:
 - AP Librae Hervet+15, Sanchez+16, MZ&Wagner16, Roychowdhury+22
 - Centaurus A HESS+20
- Need for extended, kinetic jet models

Potter&Cotter12.13, Zdziarski+14, Lucchini+19, . . .

Figure 2: Sketch: jet cut into numerous slices (dark), in which the kinetic equations for each particle species are solved Figure: courtesy of Jonathan Heil

An Extended Hadro-Leptonic jet model

- Jet length cut into numerous slices, where kinetic equation is solved for each species
 - Injection of primary proton and electron distribution at the base; evolved self-consistently along the jet
 - Injection of secondaries (pions, muons, pairs) in each slice
 - Pairs propagated along with primaries
 - Radiation and neutrino output for each slice
- Geometry currently fixed as
 - Parabolic acceleration region: $\Gamma_b(z) \propto \sqrt{z}$
 - Conical coasting region $\Gamma_b(z) = \text{const.}$
 - Radius: $R(z) \propto \tan \left[0.26/\Gamma_b(z)\right]$
 - Magnetic field derived with Bernoulli equation
- Considered radiation processes & fields
 - Synchrotron, photomeson production, e^{+/-}-inverse-Compton
 - Accretion Disk, BLR, DT, CMB
 - BLR and DT depend on Accretion Disk

ExHaLe-jet: Solution with external fields

Figure 3: Total spectrum (observer's frame) with distance evolution (color code) for strong (left) and weak (right) accretion disk. Thick dashed lines marks the muon-neutrino spectrum.

Figure 4: Luminosities (observer's frame) over distance for a strong (left) and weak (right) accretion disk.

- Length scales:
 - $z_{max} = 100 \text{pc}, z_{acc} = 1 \text{pc}$
 - $R_{BLR} \sim 0.05 \mathrm{pc}$ (strong), $\sim 0.005 \mathrm{pc}$ (weak)
 - $R_{DT} \sim 1$ pc (strong), ~ 0.1 pc (weak)
- Photon spectrum dominated by leptonic processes (synchrotron, external Compton)
- Strongest contribution around 0.1–1 z_{acc}
- External fields have strong impact (*left*: strong disk, *right*: weak disk)
 - "Compton dominance"
 - p- γ interactions (cf. π^0 bump)
 - Neutrino spectra
- Total jet power sub-Eddington
- Jet power dominated by magnetic field (initial value B(0) = 50G)

ExHaLe-jet: Solution without external fields

Figure 5: Total spectrum (observer's frame) with distance evolution (color code) for the p-synchrotron (left) and SSC (right) case. Thick dashed line marks the muon-neutrino spectrum.

Figure 6: Luminosities (observer's frame) over distance for the p-synchrotron (left) and SSC (right) case.

Length scales:

- z_{max} = 100pc
- $z_{acc} = 1pc$ (left), $z_{acc} = 0.1pc$ (right)
- Proton synchrotron (left):
 - Protons contribute around 0.01–0.3 z_{acc}
 - Electrons contribute around 0.05–10 z_{acc}
 - Protons dominate luminosity after 1 z_{acc}
 - Neutrinos still too weak
- Pure SSC case (right):
 - Peak contribution around 1 z_{acc}
 - Electrons dominate luminosity after 1 z_{acc}

Figure 7: Sketch: jet cut into numerous slices (dark), in which the kinetic equations for each particle species are solved Figure: courtesy of Jonathan Heil

Figure 8: Total spectrum (observer's frame) with distance evolution (color code) for strong (left) and weak (right) accretion disk. Thick dashed line marks the muon-neutrino spectrum.

An Extended Hadro-Leptonic jet model

- Flexible, kinetic, hadro-leptonic code to model the emission from an extended jet
- Parameter set results in a leptonic dominance in the spectrum
- Influence of protons (secondaries, neutrinos, etc) important

Outlook:

- Code enhancements (neutrons, details of particle transport, specific acceleration zones, etc)
- Source modeling

Figure 7: Sketch: jet cut into numerous slices (dark), in which the kinetic equations for each particle species are solved Figure: courtesy of Jonathan Heil

Figure 8: Total spectrum (observer's frame) with distance evolution (color code) for strong (left) and weak (right) accretion disk. Thick dashed line marks the muon-neutrino spectrum.

An Extended Hadro-Leptonic jet model

- Flexible, kinetic, hadro-leptonic code to model the emission from an extended jet
- Parameter set results in a leptonic dominance in the spectrum
- Influence of protons (secondaries, neutrinos, etc) important

Outlook:

- Code enhancements (neutrons, details of particle transport, specific acceleration zones, etc)
- Source modeling

All details: Zacharias+22, arXiv:2203.07956

Thank you!

Processes considered in the code

$$\frac{\partial n_i(\chi,t)}{\partial t} = \frac{\partial}{\partial \chi} \left[\frac{\chi^2}{(a+2)t_{\rm acc}} \frac{\partial n_i(\chi,t)}{\partial \chi} \right] - \frac{\partial}{\partial \chi} \left(\dot{\chi}_i n_i(\chi,t) \right) + Q_i(\chi) - \frac{n_i(\chi,t)}{t_{\rm esc}} - \frac{n_i(\chi,t)}{\gamma t_{i,\rm decay}}$$

$$(\chi = \gamma \beta)$$

Cooling processes:

- Protons: synchrotron, adiabatic, p- γ , Bethe-Heitler
- Charged pions / muons: synchrotron, adiabatic
- Electrons: synchrotron, adiabatic, inverse Compton

Acceleration processes:

- Fermi I/II, but only as a "re-acceleration"
- Main acceleration through a generic injection term

Photon absorption processes:

- Pair production on all photon fields (external ones angle averaged in the comoving frame after boosting)
- Synchrotron-self absorption
- Photons that left the emission region, are also absorbed in the BLR and DT fields (but no EBL or CMB absorption considered)

Figure 9: Parameter scan

- Parameter study based on simulation 01 (with external fields)
- Parameter details in arXiv:2203.07956
- Especially a hard proton distribution (sim12), a short acceleration region (sim02), and a small initial magnetic field (sim06) enhance the luminosity
- ...but only for strong external fields! In weak fields, effects are less pronounced.
- The reason is that these changes enhance the development of the secondray cascade, i.e. more pairs and thus more

Table 1: Parameters and values of the simulation with external fields

Parameter	Value	Parameter	Value
Redshift	0.5		
Black hole mass	$3.0 imes 10^8 M_{\odot}$	Initial magnetic field	50 G
Eddington ratio	A: 10^{-1}	Frac injected power [$L_{\rm edd}$]	$3.0 imes 10^{-6}$
	B: 10 ⁻³	Initial proton to electron ratio	1
BLR temperature	$10^4 \mathrm{K}$	Minimum proton Lorentz factor	2
DT temperature	$5.0 imes 10^2 \mathrm{K}$	Maximum proton Lorentz factor	2×10^8
Jet length	100 pc	Proton spectral index	2.5
Acceleration region	1 pc	Minimum electron Lorentz factor	100
Max jet Lorentz factor	30.0	Maximum electron Lorentz factor	$1 imes 10^5$
Jet viewing angle	1.9°	Electron spectral index	2.5
Frac Jet opening angle	0.26	-	
Frac Initial jet width	10.0		
Frac Escape time scale	10.0		
Frac Acceleration time scale	10.0		

Table 2: Parameters and values of the simulation without external fields (proton synchrotron, pure SSC)

Parameter	Value	Parameter	Value
Redshift	A: 0.5, B: 0.2	Initial proton to electron ratio	A: 1, B: 10 ⁻¹⁰
Black hole mass	$3.0 imes10^8M_\odot$	Min proton Lorentz factor	2
Eddington ratio	10^{-4}	Max proton Lorentz factor	A: 2×10^{10}
Jet length [pc]	100		B: 200
Acceleration region [pc]	A: 1, B: 0.1	Proton spectral index	A: 2.0, B: 2.8
Max jet Lorentz factor	A: 50, B: 30	Min electron Lorentz factor	A : 100
Jet viewing angle	A: 1.15°, B: 1.9°		B: 10 ⁴
Frac Jet opening angle	0.26	Max electron Lorentz factor	A: 2×10^4
Frac Initial jet width	A: 30, B: 5		B : 2×10^{6}
Frac Escape time scale	10.0	Electron spectral index	A: 2.0, B: 2.8
Frac Accel. time scale	10.0	·	
Initial magnetic field [G]	A: 70, B: 30		
Frac injected power [$L_{\rm edd}$]	A: 2.0×10^{-4}		
	B: 2.0×10^{-6}		