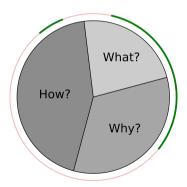
Statistical Goodness and Utility

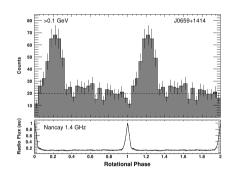
Lessons learned from multiband pulsar light curve fits

AS Seyffert ¹ C Venter ¹ AK Harding ²

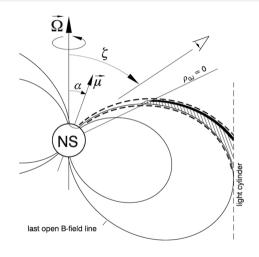
¹Centre for Space Research, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa

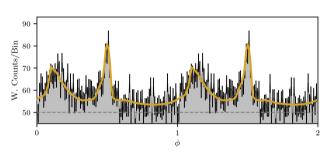

²Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 58545, USA

Tenth International Fermi Symposium, 9th-15th October 2022

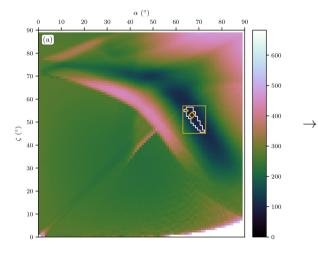

An invitation

This talk will focus on the "What?" (and some "Why?") of our work.


For more: Come and chat over coffee etc!



Pulsars and Light Curves (LCs)


Models and Fits (single-band)

$$\chi^2(M) = \sum_{i=1}^n \left(\frac{D_i - M_i}{E_i}\right)^2$$

Models and Fits (single-band)

Parameter estimates

$$(\alpha,\zeta) = (67^{\circ}, 53^{\circ})$$

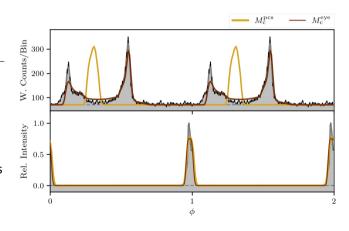
With constraints:

$$(\alpha,\zeta) = \left(67^{+5}_{-3}, 53^{+3}_{-7}\right)^{\circ}$$

Models and Fits (dual-band)

$$\chi_{\rm c}^2(M_{\rm c}) = \chi_{\rm r}^2 + \chi_{\gamma}^2 \quad \rightarrow$$

Example


Using χ_c^2 : the gold fit is better

But if:

better shape \Rightarrow better estimates

Then:

the brown fit is better

!!! SPOILER !!!

We succeeded in eliminating the radio dominance! 1

¹Papers in prep.

!!! SPOILER !!!

We succeeded in eliminating the radio dominance!

Focus of this talk

What more generally applicable lessons did we learn in doing so?

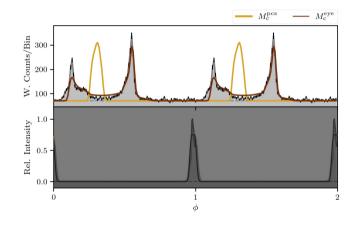
Lesson #1

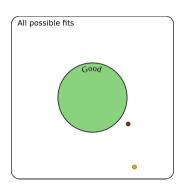
There are two types of statistical fit²

Fits aimed at **Establishing goodness of fit**

&

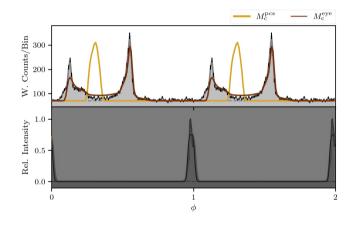
Fits aimed at **Parameter estimation**


which require a **deviation statistic**


which require a utility statistic

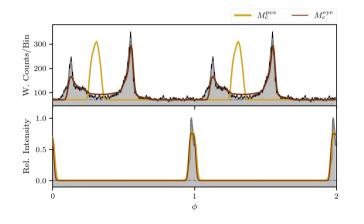
²Within the LC fitting context, at least.

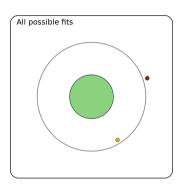
Single-band fits


— "Just use χ^2 and squint!"

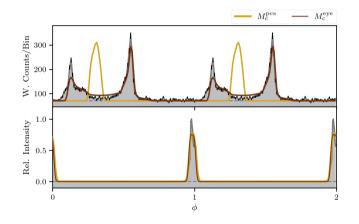


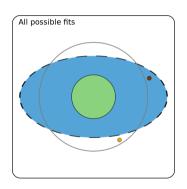
Single-band fits


— "Just use χ^2 and squint!"



Dual-band fits


— "Just use χ^2 and squint!"



Dual-band fits

Lesson #2

Parameter estimation requires its own statistic (in some contexts)

What's going on here??

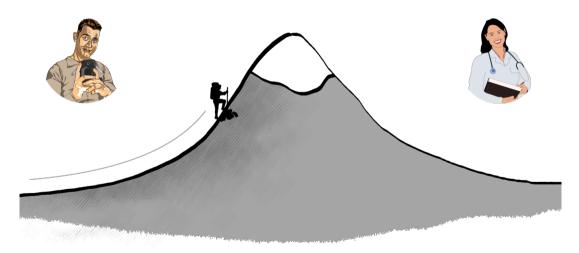
$$\chi_{\rm c}^2(M_{\rm c}) = \chi_{\rm r}^2 + \chi_{\gamma}^2$$

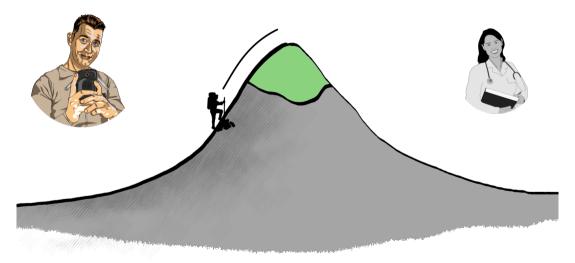
Most simply

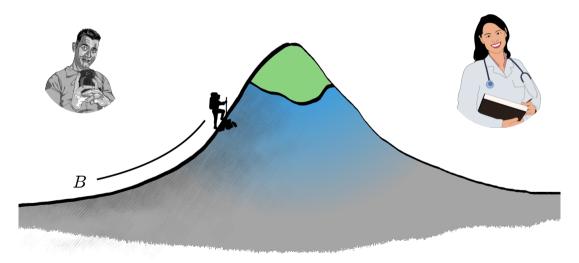
- From the perspective of utility, $\chi^2_{\rm r}$ and χ^2_{γ} carry different units
- This renders the addition operation improper

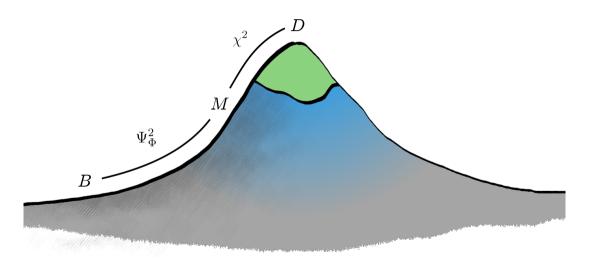
Therefore

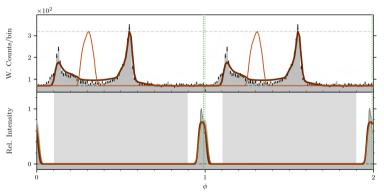
We need a single-band statistic that carries units of utility


Lesson #3


Deviation is top-down, while Utility is bottom-up





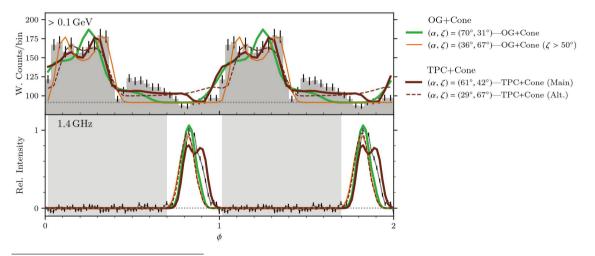


Dual-band fit: Revisited

$$\Psi_{\Phi,c}^2(M_c) = \frac{1}{2}\Psi_{\Phi,r}^2 + \frac{1}{2}\Psi_{\Phi,\gamma}^2$$

PSR J1048-5832 $log(\lambda_{rv}) = 1.50$

$$\Psi^2_{\Phi,\mathrm{r}}: 0.95 \rightarrow 0.92$$


$$\Psi_{\Phi,\gamma}^2: -4.12 \rightarrow 0.88$$

Bonus lesson: Some observations are like perturbations; from B to D.

Lesson #4

 $\chi^2_{\rm c}$ deviation and $\Psi^2_{\Phi,{\rm c}}$ utility are complementary

Example application for PSR J2039–5617³

³see Corongiu et al., 2020

Example application for PSR J2039–5617³

Fit	$\Psi^2_{\Phi,c}$	$[\chi_c^2]_{\nu}$	$\Psi^2_{\Phi,r}$	$\chi^2_{\nu,r}$	$\Psi^2_{\Phi,\gamma}$	$\chi^2_{\nu,\gamma}$
OG+Cone	0.883	6.02	0.967	5.01	0.799	9.02
OG+Cone ($\zeta > 50^{\circ}$)	0.834	11.12	0.924	11.50	0.743	11.52
TPC+Cone (Main)	0.846	16.50	0.859	21.21	0.833	7.53
TPC+Cone (Alt.)	0.841	10.46	0.929	10.69	0.753	11.12

³see Corongiu et al., 2020

Example application for PSR J2039–5617³

Fit	$\Psi^2_{\Phi,c}$	$[\chi_{\rm c}^2]_{\nu}$	$\Psi^2_{\Phi,r}$	$\chi^2_{\nu,r}$	$\Psi^2_{\Phi,\gamma}$	$\chi^2_{\nu,\gamma}$
OG+Cone	0.883	6.02	0.967	5.01	0.799	9.02
OG+Cone ($\zeta > 50^{\circ}$)	0.834	11.12	0.924	11.50	0.743	11.52
TPC+Cone (Main)	0.846	16.50	0.859	21.21	0.833	7.53
TPC+Cone (Alt.)	0.841	10.46	0.929	10.69	0.753	11.12

³see Corongiu et al., 2020

Summary & Conclusion

The big lessons that we learned are:

- 1 There are two types of statistical fit:
 - Establish goodness of fit, and
 - Parameter estimation
- 2 Parameter estimation requires its own statistic (in some contexts)
- 3 Deviation is top-down, while utility is bottom-up
- 4 χ^2_c deviation and $\Psi^2_{\Phi,c}$ utility are complementary

These lessons aren't confined to pulsar LC fitting, though!

In future we hope to apply these lessons to other fits where deviation-focussed statistics struggle; e.g., joint fitting to spectral data and surface brightness profiles for PWNe⁴

⁴see Van Rensburg, et al., 2020 for some preliminary results!

Summary & Conclusion

The big lessons that we learned are:

- 1 There are two types of statistical fit:
 - Establish goodness of fit, and
 - Parameter estimation
- 2 Parameter estimation requires its own statistic (in some contexts)
- 3 Deviation is top-down, while utility is bottom-up
- 4 χ^2_c deviation and $\Psi^2_{\Phi,c}$ utility are complementary

—Thank you!—