Modelling the high-energy curvature radiation for the Vela pulsar using a general particle dynamics approach.

Louis Du Plessis

Supervisor: C. Venter Collaborators: A.K. Harding Z. Wadiasingh

Centre for Space Research, North-West University

October 10, 2022

Modelling the high-energy curvature radiation for the Vela pulsar using a general particle dynamics approach.

Louis Du Plessis

itroduction

Aims

Adaptive ODE Solver

olver

Higher-Order ODE Schemes

> Radiation-Reaction force

Comparison with Fakata et al. (2019)

arding and ollaborators' code

Emission Map Calculations

Emission Map Calibrations

Future Wo

Bibliography

Reference

Introduction

Standard Pulsar Model

- ► The large rotating magnetic field induces an electric field
- The induced electric field rips particles from the star's surface
- ► The last closed magnetic field lines touch the light cylinder at $R_{\rm LC} = \frac{cP}{2\pi}$
- ▶ In the braking model the change in rotational energy is equated to the luminosity radiated by a magnetic dipole in a vacuum
- This may be written as the equation $\dot{\Omega} = -k\Omega^n$

Figure: Lorimer and Kramer (2005)

Modelling the high-energy curvature radiation for the Vela pulsar using a general particle dynamics approach.

Louis Du Plessis

Introduc

Standard Pulsar Model

Aims

Adaptive ODE S

Solver

Schemes

Radiation-Reaction Force

Comparison with Takata et al. (2019)

Harding and Collaborators' cod

Emission IV Calculation

Emission Map Calibrations

Future Work

Bibliography

References

Aims

Develop a new general emission model to work for a WD binary scenario:

- Solve particle dynamics generally without assuming super-relativistic particles and small pitch angles.
- Calculate the broadband light curves and spectra at different orbital phases.
- Calculate Stokes parameters, PPA, and degree of polarisation at different orbital phases.
- Calibrate our code with the millisecond pulsar emission code of Harding and collaborators.

Modelling the high-energy curvature radiation for the Vela pulsar using a general particle dynamics approach.

Louis Du Plessis

IIILIOO

Aims

Adaptive OD

Solver

Higher-Order ODE Schemes

orce

Takata et al. (2019) Harding and

Collaborators'

Emission Map Calculations

Emission Map Calibrations

Future Worl

Bibliography

References

Adaptive ODE Solver

► Solve Lorentz equation:

$$\frac{d\mathbf{p}}{dt} = q \left(\mathbf{E} + \frac{c\mathbf{p} \times \mathbf{B}}{\sqrt{m^2 c^4 + \mathbf{p}^2 c^2}} \right). \tag{1}$$

- ▶ Do n-stage evaluations to solve the ODE depending on method accuracy.
- ▶ One can calculate the next value by weighing stages, $y_{n+1} = y_n + h \sum_{i=1}^{s} b_i k_i$.
- ▶ One can use a method with embedded lower order to get a truncation error, $\tau_{n+1} = y_{n+1} y_{n+1}^* = \sum_{i=1}^s (b_i b_i^*) k_i$.
- ightharpoonup Calculate the adaptive next step size using au_{n+1} and a given accuracy threshold.

$k_1 = f(t_n, y_n),$ $k_2 = f(t_n + c_2h, y_n + h(a_{21}k_1)),$ $k_3 = f(t_n + c_3h, y_n + h(a_{31}k_1 + a_{32}k_2)),$ \vdots $k_s = f(t_n + c_sh, y_n + h(a_{s1}k_1 + a_{s2}k_2 + \dots + a_{s,s-1}k_{s-1}))$								
c_1	a_{11}	a_{12}		a_{1s}				
c_2	a_{21}	a_{22}		a_{2s}				
:	:	:	٠.	:	_	c	A	
c_s	a_{s1}	a_{s2}		a_{ss}	_		$\mathbf{b^T}$	
	b_1	b_2		b_s				
	b_1^*	b_2^*		b_s^*				

Modelling the high-energy curvature radiation for the Vela pulsar using a general particle dynamics approach.

Louis Du Plessis

Introduction

Aime

Adaptive ODE Solver

olver

Higher-Order ODE Schemes

Radiation-Reaction Force

Takata et al. (2019)

Harding and Collaborators' co

> nission Map Ilculations

Emission Map Calibrations

Future W

ibliography

References

Calibration of ODE Solver

- ▶ Set *E* = 0.
- Conserved energy and constant pitch angle for:
 - Constant B-field
 - Changing B-field strength.
- Conserved energy for static magnetic dipole and see if the obtained magnetic mirror effect as well as drift are correct.

Modelling the high-energy curvature radiation for the Vela pulsar using a general particle dynamics approach.

Louis Du Plessis

Calibration of ODE Solver

Radiation-Reaction

pitch

Higher-Order ODE Schemes

▶ The ODE schemes implemented in the code:

- Runge-Kutta Fehlberg 4(5): 5 stage.

- DVERK 6(5): 8 stage.

- Prince-Dormand 8(7): 12 stage.

Adaptive Curtis 10(8): 18 stage.

Adaptive Hiroshi 12(9): 29 stage.

▶ Benchmark of schemes:

Tol 1e ⁻¹²	RKF	DV	PD	CR	HR
Time vs RKF	1	0.82	0.36	0.32	0.65
$\delta\gamma$	0.4	0.25	0.001	0.014	0
T 1 1 -14	DIZE	DV/	DD	CD	LID I

Tol 1e ⁻¹⁴	RKF	DV	PD	CR	HR
Time vs RKF	1	0.82	0.29	0.23	0.48
$\delta\gamma$	0.01	0.008	0	0	0

Modelling the high-energy curvature radiation for the Vela pulsar using a general particle dynamics approach.

Louis Du Plessis

Introduction

Aim

Adaptive O

Calibration of OI

Higher-Order ODE Schemes

-Force

Comparison with Takata et al. (2019)

arding and ollaborators' code

mission Map

Emission Map

uture Wo

ibliography

References

Radiation-Reaction Force

▶ Use equation from Landau and Lifshitz for general radiation-reaction force:

$$\begin{split} \mathbf{f} &= \frac{2e^3\gamma}{3mc^3} \left\{ \left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla \right) \mathbf{E} + \frac{1}{c} \mathbf{v} \times \left(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla \right) \mathbf{H} \right\} \\ &+ \frac{2e^4}{3m^2c^4} \left\{ \mathbf{E} \times \mathbf{H} + \frac{1}{c} \mathbf{H} \times (\mathbf{H} \times \mathbf{v}) + \frac{1}{c} \mathbf{E} (\mathbf{v} \cdot \mathbf{E}) \right\} \\ &- \frac{2e^4\gamma^2}{3m^2c^5} \mathbf{v} \left\{ \left(\mathbf{E} + \frac{1}{c} \mathbf{v} \times \mathbf{H} \right)^2 - \frac{1}{c^2} (\mathbf{E} \cdot \mathbf{v})^2 \right\}. \end{split} \tag{3}$$

- ▶ The first term of Equation 3 requires 9, 18 or 36 evaluations of the B-field per stage to find the derivatives.
- ▶ This first term is $\sim 10^8 10^{10}$ times smaller than the largest component.
- ► The super-relativistic form of Equation 3 is given by:

$$f_{x} = -\frac{2e^{4}\gamma^{2}}{3m^{2}c^{4}}\left\{ (E_{y} - H_{z})^{2} + (E_{z} + H_{y}^{2}) \right\}$$
(4)

ightharpoonup Equation 3 and 4 converge at a Lorentz factor around 10^4-10^5 .

$$P_{rad} = \mathbf{F}_{rad} \cdot \mathbf{v},$$

$$E_{rad} = \int \mathbf{F}_{rad} \cdot \mathbf{v}.dt$$
(5)

Modelling the high-energy curvature radiation for the Vela pulsar using a general particle dynamics approach.

Louis Du Plessis

ntroductio

Aims

Adaptive ODE Solver

Solver

Schemes

Radiation-Reaction Force

Results

Comparison with Takata et al. (2019)

Harding and Collaborators' code

mission Map

Emission Map

uture Work

uture vvori

References

References

Radiation-Reaction Force

Results

Modelling the high-energy curvature radiation for the Vela pulsar using a general particle dynamics approach.

Louis Du Plessis

Results

Comparison with Takata et al. (2019)

Takata uses rewritten forms of equations from Harding et al. (2005).

$$\frac{d\gamma}{dt} = -\frac{P_{\perp}^2}{t_c}$$

$$\frac{d}{dt}\left(\frac{P_{\perp}^{2}}{B}\right) = -2\frac{B}{t_{s}\gamma}\left(\frac{P_{\perp}^{2}}{B}\right)^{2}$$
(6)

- ► Where $t_s = 3m_e^3 c^5/2e^4 B^2$.
- They predict the mirror at $r_m \sim a \sin^{2/3} \theta_p$
- ► The super-relativistic case agrees with Takata's γ_{loss} but not the mirror point.
- ► The general case disagrees largely with Takata's results.

Modelling the high-energy curvature radiation for the Vela pulsar using a general particle dynamics approach.

Louis Du Plessis

Introduc

Aime

Adaptive OE

olver

Higher-Order ODE Schemes

Radiation-Reaction Force

Comparison with Takata et al. (2019)

Collaborators' code

Emission Map Calculations

Emission Map Calibrations

Future W

Bibliography

References

E.

Harding and Collaborators' code

Tracing out the particle trajectory incorporating E × B drift from Kalapotharakos et al. (2014).

$$\mathbf{v}/c = \mathbf{E} \times \mathbf{B}/(B^2 + E_0^2) + f\mathbf{B}/B.$$

- Solving transport equations from Harding et al (2005) to calculate emission.
- $d\gamma/dt = eE_{\parallel}/mc 2e^4B^2p_{\perp}^2/3m^3c^5,$
- $dp_{\perp}/dt = -3cp_{\perp}/2r 2e^4B^2p_{\perp}^3/3m^3c^5\gamma.$
- Gyrocentre approach with average particle pitch angle.

Modelling the high-energy curvature radiation for the Vela pulsar using a general particle dynamics approach.

Louis Du Plessis

ntroduction

Λ:---

Adaptive ODE Solve

Solver

Higher-Order ODE Schemes

Radiation-Reactioi Force

Comparison with Takata et al. (2019)

Harding and Collaborators' code

Emission Map Calculations

Emission Map Calibrations

Future Wo

Bibliography

References

Emission Map Calculations

- We are only looking at curvature radiation for the calibration.
- We temporarily use the analytical formula for the static dipole curvature radius.
- The perpendicular E-field for a co-rotating plasma in the retarded-dipole scenario is given by:
- $\blacktriangleright \ \mathbf{E}_{\perp} = (-\mathbf{\Omega} \times \mathbf{r})/\mathbf{c} \times \mathbf{B}.$
- ► The phase corrections are given by:
- $\phi_{obs} = \\ \phi_{em} r_{em} \times \eta_{em} / R_{LC} \Delta \phi_{rot}$
- Drift velocity is calculated using:
- $\mathbf{v}/c = \mathbf{E} \times \mathbf{B}/B^2$.
- ► Figures from Barnard et al.(2021).

Modelling the high-energy curvature radiation for the Vela pulsar using a general particle dynamics approach.

Louis Du Plessis

ntroduc

Aims

Adaptive ODE Solver

Solver

Schemes

Force

Takata et al. (2019)

arding and Collaborators' c

Emission Map Calculations

Calibrations

Future W

Bibliography

References

Emission Map Calibrations

Retarded dipole

Modelling the high-energy curvature radiation for the Vela pulsar using a general particle dynamics approach.

Louis Du Plessis

Radiation-Reaction

Retarded dipole

Emission Map Calibrations

Force-Free Fields

Modelling the high-energy curvature radiation for the Vela pulsar using a general particle dynamics approach.

Louis Du Plessis

Introduct

Aims

Adaptive ODE

Solver

Schemes

Radiation-Reaction Force

Takata et al. (2019)

arding and ollaborators' co

Emission Map Calculations

Emission Map Calibrations

Retarded dipole

Curvature Radius Calculations

Future Wor

Future vvork

Emission Map Calibrations

Curvature Radius Calculations

► The particle curvature radius can be calculated using:

$$\rho_c = \frac{1/\sqrt{(x'')^2 + (y'')^2 + (z'')^2}}{1/\sqrt{(x'')^2 + (y'')^2 + (z'')^2}}.$$

► Using numerical differentiation we calculate x_i" using:

$$x_{i}^{"} = (-3x_{i-1}^{'} + 4x_{i}^{'} - x_{i+1}^{'})/2ds.$$

- What difference does including the gyroradius have on the curvature radius?
- Use the effective curvature radius calculation employed in synchro-curvature radiation models

Modelling the high-energy curvature radiation for the Vela pulsar using a general particle dynamics approach.

Louis Du Plessis

Introdu

Aims

Adaptive ODE So

Solver

Higher-Order ODE Schemes

Radiation-Reaction Force

Comparison with Takata et al. (2019)

Collaborators' co

Emission Map Calculations

Emission Map Calibrations

Retarded dipo

Curvature Radius Calculations

Future Work

_...

Future Work

- ▶ Write up results for ApJ/MNRAS article.
- Calibrate with Harding and collaborators' emission maps and particle trajectories for pulsar scenario.
- Use appropriate E-field (force-free fields) to get E × B drift. Study effect of new WD scenario on model outputs.
- Implement polarisation calculations to produce phase plots.
- Determine how to scale particles' emission to have significant statistics. Invoke magic trickery to get code running in a reasonable time.
- Run code for orbital time scale, investigate different B-fields and E-fields, and investigate different particle pitch-angle distributions.

Modelling the high-energy curvature radiation for the Vela pulsar using a general particle dynamics approach.

Louis Du Plessis

ntroduction

Aims

Adaptive ODE So

ibration of ODE

Higher-Order ODE

Radiation-Reaction

Comparison with Takata et al. (2019)

irding and illaborators' coc

Emission Map Calculations

mission Map alibrations

Future Work

ibliography

References

Bibliography

Geng, J.-J., Zhang, B., and Huang, Y.-F. (2016). A Model of White Dwarf Pulsar AR Scorpii. Astrophys. J. Lett., 831:L10.

Modelling the high-energy curvature radiation for the Vela pulsar using a general particle dynamics approach.

Louis Du Plessis

ntroduction

Aims

Adaptive ODE Solver

olver

Higher-Order ODE Schemes

Radiation-Reaction

Comparison with Fakata et al. (2019)

larding and ollaborators' code

Emission Map

Emission Map

uture Work

acare rrom

bliography

References

Extra

Plots

Modelling the high-energy curvature radiation for the Vela pulsar using a general particle dynamics approach.

Louis Du Plessis

ntroductior

Aims

Adaptive ODE Solve

alibration of ODE

Higher-Order ODE Schemes

Radiation-Reactic Force

Comparison with Takata et al. (2019)

arding and ollaborators' cod

nission Map

Emission Map

Calibrations

Future Wo

ibliography

References

Extra

Plots