

Solar dark matter scattering constraints with the Fermi Large Area Telescope

10th International Fermi Symposium Johannesburg, South Africa 12/10/2022

Dark matter Session

D.Serini,

F. Loparco,

M. N. Mazziotta

Dark matter scenarios (1/2)

- DM particles χ interacting with the nuclei in the solar environment
 - $-\chi$ captured by the Sun through elastic scattering with the solar nuclei
- Captured χ thermalize and sink in the core of the Sun, where they annihilate into intermediate state ϕ
 - $-\chi\chi\to\phi\phi$
 - The decay of the ϕ can yield gamma rays outside the Sun
- In this work we have studied gamma rays produced from the ϕ decays into the $b\overline{b}$, $\tau^+\tau^-$, $\mu^+\mu^-$... channels
 - These models predict a broad continuous spectrum
 - Its shape depends on the mediator decay channel and on the masses m_{φ} and m_{χ}

This work integrates our previous analysis (PRD102(2), 022003, 2020), where we studied the scenarios with solar gamma rays produced either in the WIMP annihilations or decays (e.g. $\chi\chi \to \gamma\gamma$) or in the mediator decays $(\chi\chi \to \phi\phi, \phi \to \gamma\gamma)$

Dark matter scenarios (2/2)

Expected DM γ-ray flux at Earth:

$$\Phi_{DM}(E; m_{\chi}, m_{\phi}, \sigma, L, \dots) = \Gamma_{cap} (m_{\chi}, \sigma) \cdot \varphi(E, m_{\chi}, m_{\phi}, L)$$

- L is the mediator decay length (in this work it is fixed at $L=R_{\odot}$)
- Γ_{cap} is DM the capture rate in the Sun
 - It is calculated with DARKSUSY code for both spin-dependent and spin-independent cross sections assuming default settings:
 - local DM density ρ_{\odot} = 0.3 GeV/cm³
 - Maxwellian velocity distribution with $\langle v \rangle$ = 220 km/s and v_{rms} = 270 km/s
 - $-\sigma_0 = 10^{-40} \text{cm}^2$
- $\varphi(E, m_{\chi}, m_{\phi}, L) = \frac{1}{4\pi D^2} Y(E, m_{\chi}, m_{\phi}, L)$ is the γ -ray flux at Earth per DM annihilation:
 - D = 1 AU is the Sun-Earth distance
 - $Y(E, m_{\chi}, m_{\phi}, L)$ is the γ -ray yield which depends only on the kinematics of the mediator decay

DM γ -ray yield evaluation with WIMPSim

- We have used the WIMPSim tool med_dec to evaluate the DM γ -ray yields $Y(E, m_{\chi}, m_{\phi}, L=R_{\odot})$
- For each pair of (m_{χ}, m_{ϕ}) a set of 10⁵ events is simulated:
 - Different DM and mediator masses are explored in a range up to 1 TeV/c²
 - We require that $m_\chi > m_\phi$ and $m_\phi > 2m_{X=b,\tau,\mu}$...
 - m_{ϕ} > 11.5 GeV/c² for the *bb* decay channel
 - m_{ϕ} > 3.7 GeV/c² for the $\tau^{+}\tau^{-}$ decay channel
 - m_{ϕ} > 1.0 GeV/c² for the $\mu^{+}\mu^{-}$ decay channel
- Only gamma rays reaching the Earth without being absorbed in the Sun and with a direction lying within 2° from the Sun are selected

Data analysis procedure (1/2)

We have implemented an analysis procedure to constrain the DM signal by the direct observation of the solar gamma-ray emission performed by the LAT

- **Dataset**: 13.5-years of Fermi-LAT observations
- We use an ON/OFF technique:
 - ON Region : Rol of 2° angular radius centered on the Sun
 - OFF Region: Rol of 2° angular radius centered on the 6 months time-offset Sun
- We have developed two approaches for the analysis of the LAT data which do not require any template model for the standard solar emission
 - "Conservative" approach:
 - the excess counts in the ON region wrt the OFF region are originated from a DM signal
 - The contribution of the steady solar emission is therefore neglected
 - The upper limits on the DM-nucleon cross section obtained with this approach will be overestimated
 - "Optimistic" approach:
 - the excess counts in the ON region wrt the OFF region are due to the steady solar emission
 - A possible DM signal should stay within the statistical fluctuations (saturated model)
 - The constraints on the DM-nucleon cross sections will be stronger

Data analysis procedure (2/2)

Expected photon counts from DM annihilations in the ON region:

$$\mu_{DM}(E_o) = t_{on} \int dE \, \mathcal{R}_{on}(E_o|E) \Phi_{DM}(E, m_{\chi}, m_{\phi}, \sigma, L)$$

- E_o is the observed photon energy
- t_{on} is the integrated live time in the ON region
- $\mathcal{R}_{on}(E_o|E)$ is the instrument response matrix incorporating the effective area, the angular resolution and the energy resolution of the LAT
- $\Phi_{DM}(E, m_{\chi}, m_{\phi}, \sigma, L)$ is the expected DM γ -ray flux
- For each decay channel and pair of masses (m_{χ}, m_{ϕ}) we have modeled the expected DM γ -ray flux as:

$$\Phi_{DM}(E) = k_{DM} \cdot \Phi_{DM,0}(E, m_{\chi}, m_{\phi}, \sigma_0 = 10^{-40} cm^2, L = R_{\odot})$$

- $\Phi_{DM,0}$ is the reference flux with Γ_{cap} $(m_{\chi}, \sigma_0 = 10^{-40} cm^2)$
- The normalization k_{DM} is left as a free parameter

Conservative approach

- In the conservative approach k_{DM} it is evaluated by imposing that the counts from DM annihilations $\mu_{DM}(E_0)$ do not exceed the upper limits at 95% confidence level (CL) on the signal counts $n_{sig,95}(E_o)$ in any observed energy bin
 - The values of $n_{sig,95}(E_o)$ have calculated from the observed counts in the ON and OFF regions, $n_{on}(E_o)$ and $n_{off}(E_o)$, implementing a Bayesian method^[1] that take the exposures of the two regions into account

Optimistic approach

- In the optimistic approach k_{DM} it is evaluated by implementing a hypothesis test based on the maximum likelihood formalism:
 - in the null hypothesis H_0 we assume that the observed counts $n_{on}(E_o)$ in each energy bin are originated from Poisson distributions with average values $n_{on}(E_o)$
 - in the alternative hypothesis H_1 we assume that the observed counts $n_{on}(E_o)$ are originated from Poisson distributions with average values $n_{on}(E_o) + k_{DM} \cdot \mu_{DM,0}(E_o)$
 - where $\mu_{DM,0}(E_o)$ are the expected DM counts when the cross section assumes its reference value $\sigma_0 = 10^{-40} cm^2$
 - We define the log-likelihood ratio as:

$$\lambda(k_{DM}) = \sum_{E_o} \left[-k_{DM} \cdot \mu_{DM,0}(E_o) - n_{on} \log \frac{n_{on}(E_o) + k_{DM} \cdot \mu_{DM,0}(E_o)}{n_{on}(E_o)} \right]$$

- The best fit of k_{DM} is obtained by maximizing the log-likelihod ratio
- The upper limit at 95%CL $k_{DM,95\%}$ is evaluated by solving the equation $\lambda = \lambda_{max} \frac{2.71}{2}$
 - where λ_{max} is the maximum value of the log-likelihood ratio.

Solar capture rate constraints

- The limits on k_{DM} can be converted:
 - into constraints on the capture rate Γ_{cap} :

$$\Gamma_{cap,95\%} = k_{DM,95\%} \cdot 4\pi D^2$$

 into constraints on the DM-nucleon spin-dependent and spin-independent scattering cross sections:

$$\sigma_{95\%} = \sigma_0 \cdot \frac{\Gamma_{cap,95\%}}{\Gamma_{cap,0}(m_\chi, \sigma_0)}$$

DM-nucleon cross section constraints

- The DM-nucleon constraints obtained with the optimistic approach are stronger than those obtained with the conservative approach
 - For all the channels the limits lie in the range 10^{-45} 10^{-39} cm² for σ_{SD} and 10^{-47} 10^{-42} cm² for σ_{SI}
 - The strongest constraints are obtained for the lowest allowed values of m_φ

Current Limits on the spin-dependent cross section for L = R $_{\odot}$

- The results are compared with those obtained from previous analyses of the Fermi LAT and of the HAWC data within the same theoretical scenario^[3-4]
- The 90% CL limits obtained from the PICO-60 direct measurements of the spin-dependent DM-nucleon cross sections are also shown^[5]
- In the case of the γγ channel we also show the results of our previous analysis with 10 years of LAT data^[2] (PRD102(2), 022003, 2020)
 - The limits obtained with the optimistic analysis approach are consistent with those of our previous work, although the analysis technique is different

^[2] Mazziotta, M. N et al Phys Rev D, 102(2), 022003.

^[3] A. Albert et al. (HAWC), Phys. Rev. D 98, 123012 (2018)

^[4] D. Bose, T. N. Maity, and T. S. Ray, (2021), arXiv:2112.08286

^[5] C. Amole et al. (PICO), Phys. Rev. D 100, 022001 (2019)

Dark matter scattering constraints from long lived mediators

- We have performed a simulation campaign for all the possible decay channels provided by med_dec
 - The strongest limits are obtained with the optimistic approach and selecting the lowest kinematically allowed value of m_ϕ
 - Our results are compared with those obtained from the direct measurements performed by the PICO-60^[5] (SD) and XENON1T (SI)^[6] experiments
 - In the case of the $\gamma\gamma$ channel we also show the results of our previous analysis with 10 years of LAT data (PRD102(2), 022003, 2020)

12

Conclusions

- We have constrained a set of DM models predicting a gamma-ray signal from the Sun through the annihilation of solar WIMPs into long-lived mediators which can decay outside the Sun $(\chi\chi\to\phi\phi, \phi\to b\bar{b}, \tau^+\tau^-, \mu^+\mu^-...)$
 - These scenarios would yield a smooth γ -ray spectrum whose shape depends on m_{ϕ} and m_{χ} and on the mediator decay channel
 - The evaluation of the constraints on the DM-nucleon cross section is strongly model-dependent,
 since the mediator properties determine the final results
- The results obtained in this work show the potentiality of solar gamma rays as a probe for indirect DM detection, since the limits obtained with this analysis are comparable or even stronger than those currently quoted in the literature
- For more details see https://arxiv.org/abs/2208.13157

Conservative approach

- In the **conservative approach** k_{DM} it is evaluated by imposing that the counts from DM annihilations $\mu_{DM}(E_o)$ do not exceed the upper limits at 95% confidence level (CL) on the signal counts $n_{sig,95}(E_o)$ in any observed energy bin
 - The values of $n_{sig,95}(E_o)$ have been calculated from the observed counts in the ON and OFF regions, $n_{on}(E_o)$ and $n_{off}(E_o)$, implementing a Bayesian method^[1] that take the exposures of the two regions into account
 - We assume that the counts in the off region are originated from background, while those in the on region are originated from both signal and background:
 - n_{off}(E_o) is a Poisson random variable with average value n_{bkg}(E_o)
 - n_{on}(E_o) is a Poisson random variable with average value n_{sig}(E_o)+c·n_{bkg}(E_o)
 - c is a constant which takes into account the exposures of the two regions
 - The bayesian method allows the evaluation of the posterior PDF of the signal counts $n_{sig}(E_o)$ starting from the observed counts $n_{on}(E_o)$ and $n_{off}(E_o)$ and assuming uniform priors for both $n_{bkg}(E_o)$ and $n_{sig}(E_o)$
 - The upper limits at 95% C.L. on the signal counts in the ON region are calculated from the posterior PDF