Tenth International Fermi Symposium

Fermi LAT observation of the Moon

Francesco Loparco*

Salvatore De Gaetano, Mario Nicola Mazziotta on behalf of the Fermi LAT Collaboration

The gamma-ray Moon

- The Moon is among the brightest sources in the gamma-ray sky
- Lunar gamma rays are produced in the hadronic interactions of cosmic rays with the regolith
- The gamma-ray flux from the Moon is sensitive to:
 - Cosmic-ray fluxes
 - Composition of the lunar surface
 - Mechanisms of the hadronic interactions
- The Fermi LAT has already measured the gamma-ray flux from the Moon using the data collected in its first 7 years of operation
 - For further details see PRD 93, 082001 (2016)
- The previous results have been now updated using a 14-years dataset
 - The observation period exceeds the duration of a solar cycle

Data selection (1/2)

- Data sample:
 - Fermi-LAT Pass 8 SOURCE photon data with E>10 MeV
 - August 2008-June 2022
- Signal region:
 - Cone centered on the Moon position
 - Angular radius $\theta = \sqrt{[\theta_0(E/E_0)^{-\delta}]^2 + \theta_{min}^2}$
 - $\theta_{min} = 1^{\circ}, \, \theta_0 = 5^{\circ}, \, E_0 = 100 MeV, \, \delta = 0.8$
 - Reflects the energy dependence of the LAT PSF
- Background region:
 - Cone centered on the time-offset Moon position
 - Time offset $\Delta t = 14 \ days$
 - Same angular radius as the signal region

Data selection (2/2)

Event selection:

- LAT in standard science operation configuration and outside the SAA
- angular separation < 100° between a cone of 15° radius centered on the Moon direction and the zenith direction
- Moon observed with off-axis angle < 66.4°
- Moon at galactic latitudes $|b| > 5^{\circ}$
- angular separation > 20° between the Moon and the Sun
- angular separation > 20° between the Moon and the brightest sources in the 4FGL catalog
- Same selection cuts for the signal and background regions

Significance maps of the Moon

- The significance maps are built from the counts in the signal and background regions with the Li&Ma approach
 - The significance increases as the time interval increases
 - The significance evaluated over 2-years time intervals changes due to solar modulation

Reconstruction of the gamma-ray energy spectrum

• The gamma-ray fluxes are evaluated from the counts in the signal and in the background region by maximizing a Poisson likelihood function:

$$\mathcal{L}(\vec{\phi}_{S}, \vec{\phi}_{b}; \vec{n}_{S}, \vec{n}_{b}) = \prod_{i=1}^{N} e^{-\mu_{S}(E_{i})} \frac{\mu_{S}(E_{i})^{n_{S}(E_{i})}}{n_{S}(E_{i})!} \prod_{i=1}^{N} e^{-\mu_{b}(E_{i})} \frac{\mu_{b}(E_{i})^{n_{b}(E_{i})}}{n_{b}(E_{i})!}$$

- Observed counts: $\vec{n}_S = \{n_S(E_1), n_S(E_2), \dots, n_S(E_N)\}$ and $\vec{n}_b = \{n_b(E_1), n_b(E_2), \dots, n_b(E_N)\}$
- Expected counts: $\vec{\mu}_S = \{\mu_S(E_1), \mu_S(E_2), \dots, \mu_S(E_N)\}$ and $\vec{\mu}_b = \{\mu_b(E_1), \mu_b(E_2), \dots, \mu_b(E_N)\}$
- The expected counts are given by:
 - $\mu_b(E_i) = \sum_{j=1}^N P_b(E_i|E_j)\phi_b(E_j)At_b\Delta E_j$
 - $\mu_s(E_i) = \sum_{j=1}^N P_s(E_i|E_j) [\phi_s(E_j) + \phi_b(E_j)] A t_s \Delta E_j$
 - t_s and t_b are the signal and background live times
 - $P_s(E_i|E_j)$ and $P_b(E_i|E_j)$ incorporate the IRF and the pointing history of the LAT
 - $-A = 6m^2$ is the cross section of the sphere used for event generation in the MC simulation
- The signal and the background fluxes are reconstructed with a Bayesian procedure based on a Monte Carlo Markov Chain (MCMC) implemented in the software toolkit BAT

The Moon gamma-ray spectrum

- The lunar gammaray emission is peaked at ~150 *MeV*
- No significant variations are observed with respect to previously published results

Evaluation of the expected gamma-ray fluxes

• The lunar gamma-ray flux is given by:

$$\phi(E) = \frac{\pi R^2}{d^2} \sum_{i=p,He} Y(E|T_i)I(T_i)dT_i$$

- -R = 1737km is the Moon radius
- *d* is the Moon-LAT distance
 - It is known from the LAT pointing history
- $I(T_i)$ = intensity of CR particles of the i-th species
 - We use the p and ⁴He intensities measured by AMS-02
- $Y(E|T_i)$ = yield of gamma rays of energy E produced by the particles of the i-th CR species
 - The gamma-ray yields from p and ⁴He interactions are evaluated using a simulation based on the FLUKA Monte Carlo code
 - The Moon is described as a sphere consisting of a mixture of 45% SiO₂, 22% FeO, 11% CaO, 10% Al₂O₃, 9% MgO, 3% TiO₂ with a density $\rho = 1.8 \ g/cm^3$ (see PRD 93, 082001 (2016))

7

Gamma-ray yields from protons and ⁴He nuclei

Plots from PRD 93, 082001 (2016)

Data-model comparison

 The data collected in the period May 2011-Nov 2013 are compared with MC predictions obtained by folding the p and ⁴He spectra measured by AMS-02 with the gammaray yield evaluated with FLUKA

Plot from PRD93, 082001 (2016)

Time evolution of the lunar gamma-ray flux

- The Moon gamma-ray flux is evaluated in 6months time intervals and compared with the model predictions based on CR measurements
- Predictions are obtained by folding the AMS-02 and PAMELA data with the gamma-ray yields evaluated with FLUKA
- The Moon gamma-ray flux is anticorrelated with the solar activity

Conclusions

- We have updated the measurement of the gamma-ray flux from the Moon using a 14-years dataset collected by the Fermi LAT
 - The observation period exceeds the duration of a whole solar cycle
- The average Moon gamma-ray fluxes are not significantly changed from the previously published LAT data analysis with a 7-years data sample
- We have studied the time evolution of the lunar gamma-ray emission
 - The lunar gamma-ray flux is anticorrelated with the solar activity
 - The measurements are in agreement with the predictions obtained by folding the measured spectra of cosmic-ray protons and ⁴He nuclei with the gamma-ray yields evaluated with a MC simulation based on the FLUKA code