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Blazars: phenomenon and properties

Blazars — radio-loud AGN with a jet aligned with the line of sight

@ non-thermal emission from radio to -rays
@ two-bump SED
@ highly variable!

— flares: flux ~ by factor ~10
over time-scale minutes — weeks

— high states: time-scale weeks — years
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Blazars: emission origin

‘ Origin of low-energy bump: ‘ e~ synchrotron in extended jet + host galaxy (optical)

’ Origin of ~-ray emission ‘
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Why study blazars?

Probing AGN jets physics

— matter content (e~ e or e” p)

— origin of ~-ray emission (leptonic? hadronic?)
— VHE ~-ray production site

— nature of flares and high states

B Blazar flares carry information about violent physical processes in jets
— details of particle acceleration and cooling mechanisms

Study method: physical modeling of varying MWL emission
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Flare modeling: time-dependent kinetic approach

Fundamental assumptions:
. P

@ VHE ~-ray production site: blob-in-jet
(e.g. Katarzynski et al., 2001)

'SHOCK INJECTING
ELECTRONS

@ Purely leptonic blob (e~ e™)
@ High-energy plasma particles

Physical processes:
— particle injection
— stochastic (Fermi-Il) or/and
shock (Fermi-I) acceleration
— escape
— synchrotron and IC cooling
(continuous case: AE,/E, < 1)
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Time-dependent kinetic approach: emission

Radiative processes:

@ Synchrotron emission
+ self-absorption

@ Synchrotron Self-Compton (SSC) /
external Compton (EC)
+ absorption on EBL

Transformation to observer's frame:
o,
V= ——V
1+z

L(v) =6 1. (V)

— Associated SED is computed for electron
spectrum at each time step

- Light curves = [ of SEDs

A. Dmytriiev (North-West University)
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EMBLEM code

EMBLEM - Evolutionary Modeling of BLob EMission

nput ™
paramelery
Electron spectrum
computation
‘ | Output files

F N at each time

stej
SED computation

python

[~ Output files
SEQ SED at each
evolution time step

Inpu( and LG Light curve Output files
parameters computation LCs in energy
ranges

Time-dependent leptonic code (SSC/EC) for flare modeling (Dmytriiev et al., 2021)
Self-consistent connection of the blazar low state with the high one

Flares arise as a perturbation of low state

Kinetic equation is solved with Chang & Cooper 1970 numerical scheme

Initial code: BL Lac objects. Extended to FSRQs recently!
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Inverse Compton cooling in blazars

>> Cooling is important process damping a flare Y Y

IC cooling is significant in blazars with high U,.g (FSRQ)

— leads to softer spectra and lower v of SED peaks - 8

— Thomson regime: AE./E. <1, Ec=17%s —
on~oOoT

continuous losses

— Klein-Nishina (KN) regime: AE./E. ~1, Ec~ Ee~ ymec? —

In(4
n( X)’ X:,Ymiscz =

o %UT cross-section quickly drops with energy

jumps in energy: NON-continuous losses!
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Inverse Compton cooling: continuous approximation

! The Fokker-Plank (kinetic) equation is derived assuming AE./E. <1 !

> KN effects are common in blazars!

B Most authors use continuous description of IC cooling in KN regime
in the kinetic equation:

. 2
Yeool IC = — cooI,IC(N57 Urad) Y
while KN effects have a non-continuous nature and cannot be handled by that term

B A continuous approximation by Moderski et al. (2005) is designed to
reasonably treat KN effects:

i 4O—T 6:nax
Feoalic = —3 o /6/ fiun (A€ ) ugaa (€ de’

min

1+ x)713, for x < 10*
(o) = {( )

s (In(x) = &) for x > 10

A. Dmytriiev (North-West University) Non-continuous cooling losses in blazars October 11, 2022



Inverse Compton cooling: NON-continuous case

The proper transport equation to treat large jumps of e~ in energy (Zdziarski 1988):
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B A transient Fermi-1/Il (re-)acceleration term can be added

>> The full kinetic equation becomes integro-differential equation !
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Goals and methods of this project

7 How does non-continuous cooling change blazar N, and SED 7

Goals:

@ Test the limits of the continuous-loss approach:
When does the non-continuous cooling becomes important for typical physical
conditions in blazars?

@ Explore the effect of non-continuous cooling in the context of blazar variability
and its impact on the electron spectrum and SED

Methods:
@ We extend the EMBLEM code by including non-continuous cooling terms

@ We numerically solve the integro-differential equation
by iteration technique

Application:
@ FSRQ: strong IC cooling — we choose 3C 279

@ Model 3C279 flares in a simple way with and without inclusion of the effect
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Low state of FSRQ 3C 279

First we model the low state of 3C 279 (data: Hayashida et al. (2012))

One-zone leptonic EC

Steady state arises as a result of competition between injection, escape and cooling
Cooling: synchrotron and IC

Injection spectrum: log-parabola (e.g. Dermer et al. (2014))

External photon fields: BLR (single Ly « emission line) and dusty torus
(e.g. Hayashida et al. (2012))
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extreme flares of FSRQ 3C 279
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Modeling the two extreme flares of 3C279

Flare 1 (brightest «-ray) Flare 2 (brightest optical)
@ Simple one-zone model @ Simple one-zone model
@ Increase of Doppler factor § @ Increase in the injection rate
@ Decrease of magnetic field B (normalization/density)
@ Increase of Doppler factor &
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Electron spectra: low and flaring states

Dmytriiev (N
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Difference in electron spectrum and SED

Ratio of electron spectra

Ne with full cooling term

Ne with continuous approx

= ratio low state (non-cont./cont.)
= ratio flaring state 1 (non-cont./cont.)
= ratio flaring state 2 (non-cont./cont.)

10% 10° 100 107

— - ratio low state (non-cont./cont.)
1.3{ = ratio flaring state 1 (non-cont./cont.)

) = ratio flaring state 2 (non-cont./cont.)
Ratio of SED v

1:0 = ‘/'/.:A = o) . R A
SED with full cooling term W
SED with continuous approx 08

O‘fC"’ 1072 10° 102 104 10° 108 1010 1012
energy, eV

SED ratio
)
o

Dmytriiev (N West University) Non-continuous cooling losses in blazars October 11, 2022



Outline

@ Summary and outlook

Dmytriiev (North-West University) Non-continuous cooling losses in blazars October 11, 2022



Summary

@ We have considered the effect of non-continuous IC cooling in the context of
blazar variability (with an emphasis on FSRQ)

@ The continuous-loss approximation is quite reasonable for low states of blazars
with the difference < 10 %

@ The non-continuous cooling effects become quite important (difference up to
~ 35%) during flaring states with high Compton dominance:

— At low Lorentz factors past the cooling break: a large number of electrons
“miss” this area as they experience jumps to very low v

— spectral softening

— At medium-to-high Lorentz factors far beyond the Klein-Nishina transition:
the continuous approximation overestimates the cooling effect

— spectral hardening

A. Dmytriiev (North-West University) Non-continuous cooling losses in blazars October 11, 2022 22/30



Outlook

@ What makes blazar jets cool?
More profoundly explore the effect in terms of different flare scenarios

> shock/stochastic re-acceleration

@ Detailed physical modeling of blazar flares with the inclusion of
non-continuous cooling effect

@ Consider the effect within the framework of theory/simulations of stochastic
particle acceleration (non-continuous acceleration + cooling)
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Nature of blazar flaring activity. Origin: jet

— Transient turbulence around the emitting zone
(Dmytriiev et al., 2019, 2020)

— EXHALE jet

Lepto-hadronic cascade developing throughout the entire jet
(Zacharias et al., 2022)

— Synchrotron mirror model (orphan flares)
(Battcher 2021) (Oberholzer 2021)

— Ablation of a gas cloud (Zacharias et al. 2017)

— Transient acceleration processes within em. zone:
shock, Fermi-Il (turbulence), magnetic reconnection
(e.g. Marscher & Gear 1985 ; Tramacere et al. 2011 ; Giannios et al. 2009)

— Particle injection flash
(e.g. Mastichiadis & Kirk 1997)

— Doppler factor increase due to jet bending or helicity
(Abdo et al. 2010a ; Villata & Raiteri 1999)

— Large-scale turbulence in the jet
(e.g. Li et al., 2018)

shébk Moch disk  Raretdotion

— Acceleration + plasma compression (+ turbulence)
(Marscher (2014))
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Numerical implementation: integration

The Compton kernel C(y,v) has a peculiar point when v ~ +' (small losses)

— Separate the continuous-loss part, v/(1+4) <9 <v(1+94), § < 1
and decompose into Taylor series around v ~ +':

¥ oo
—Ne(, t)/1 C(v,7)dy + / NG, ) CH' v)dy =
vy

’Y/(1+5) ! / e ! ! /
—Ne(, t)/ C(v,7)dy +/ N, t)C(Y',v)dy +
1 (146

non-cont. scatter. from ~y to lower LF non-cont. scatter. from higher LF to

Lo
Oy

"
Ne(, t) / C(v, ") — 7’)d7’}
v/ (146)

continuous cooling losses

The continuous term %[Nef'y] is integrated analytically, g = min(6/s,1) , s = 4xy:

o oo 3 3 1 2
¥ = / vy =)y = / dx no(x)orcsg” [f +& 4 2ging — 2g% —osg (f + 84 Eing - fgz)}
v/(1+6) 0 2 3 2 3 8 5

A. Dmytriiev (North-West University) Non-continuous cooling losses in blazars October 11, 2022 27 /30



Numerical implementation: parallelization

> One simulation run (without non-continuous cooling): ~ 10-15 min

> One simulation run (WITH non-continuous cooling): ~ 40-50 hours !!!

= Parallelization is required!

We use the MPI4PY module in Python Anaconda to perform
parallel computation over the Lorentz factor grid

- / — /
’/0 m ( 1#\,1
W, \_/

@) OL: [ o pg’[hon
MPI_Scatter MPI_Gather \:O N D A

— The Lorentz factor grid array is split into blocks, simultaneously processed on separate cores

— NWU/CSR cluster = 128 cores!!! — 1 simulation run: ~ 45 min - 1 hour
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Electron spectrum ratio (low state)

= model cont. cool
= model NON-cont. cool
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SED ratio (low state)
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