

Fermi GBM

14 years in the mission 2008 - 2022

Andreas von Kienlin

Max-Planck-Institut für extraterrestrische Physik (MPE), Garching

on behalf of the Fermi GBM Science Team

Fermi Gamma-ray Burst Monitor (GBM)

Sodium-Iodid Detector (NaI)

8 keV - 1 MeV

GBM Instrument paper:

Meegan, C. et al., ApJ 702, 791 (2009)

Large Area Telescope (LAT)

Bismuth Germanate (BGO)

150 keV - 40 MeV

- 4 x 3 Nals
- 2 x BGOs
- Power Box (PB)
- Digital Processing Unit (DPU)
- GBM Instrument Operations
 Center (GIOC) @ NSSTC

Fermi GBM Trigger History

4th GBM GRB Catalog - 10 years of data

von Kienlin et al., 2020

- > 1st, 2nd, 3rd catalog: 2 , 4, 6 years ⇒ Paciesas et al. 2012, von Kienlin et al. 2014, Bhat et al. 2016
- ➤ For each GRB: location, duration, peak flux & fluence (50 300 keV,10 1000keV) ⇒ standard tables
- > + information on triggering criteria, exceptional operational conditions, GCN products

4th GBM GRB Catalog: Spectral Hardness vs. Duration

Hardness, ratio of flux density: 50–300 keV / 10–50 keV

Including parameter uncertainties:

GRB Spectral Catalog - 10 years of data Poolakkil et al. 2021 ApJ, 913, 60

- Systematic spectral analysis of 2297 GRBs, two types of spectra:
 - ➤ time-integrated spectral fits ⇒ 'fluence' spectrum
 - > spectral fits at the brightest time bin (1.024s / 64 ms) ⇒ 'peak flux' spectrum
 - New: introduce two-sided uncertainties for each fitted parameter (where it could be determined)
 - ⇒ resulting in a compendium of over 18000 spectra!
 - ➤ Update of 2-yr (Goldstein et al. 2012) and 4-yr (Gruber et al. 2014) catalogs (analysis results @ HEASARC)
- ◆ 4 different empirical spectral models
 - \triangleright PLAW (A, λ), COMP (A, α , E_{peak}), BAND (A, α , β , E_{peak}), SBPL (A, λ_1 , λ_2 , E_{break}, Δ)
- Parameter Distributions

Fermi-GBM time-resolved spectral Catalog

- ◆ 1st Time-resolved spectral catalog (Yu et al. 2016)
 - ➤ 4 years (2008-2012) 954 triggered GRBs
 - ► Analyzed with GBM spectral analysis software RMFIT v4.3BA
 - ► Bright GRBs subsample criteria: F > 4 x 10⁻⁵ erg/cm², F_{Peak} > 20ph/cm²/s, SNR>30
 - → 81 GRBs resulting in 1802 time bins

Fermi-GBM time-resolved Spectral Catalog

- ◆ 1st Time-resolved spectral catalog (Yu et al. 2016)
 - ➤ 4 years (2008-2012) 954 triggered GRBs
 - ► Analyzed with GBM spectral analysis software RMFIT v4.3BA
 - ► Bright GRBs subsample criteria: F > 4 x 10⁻⁵ erg/cm², F_{Peak} > 20ph/cm²/s, SNR>30
 - → 81 GRBs resulting in 1802 time bins

- ◆ 2nd: Ongoing work (Bissaldi et al.)
 - > 10(+) years (2008-2018)
 - > 2297 GRBs useful for spectroscopy
 - ► Based on 10-yrs GBM spectral catalog (time-integrated, Poolakkil et al. 2021, also analyzed with RMFIT)
 - ► NEW analysis with **Fermi GBM Data Tools v1.1.1**
 - Rebinning lightcurves with Bayesian Blocks Analysis
 - Currently testing tools with 25 brightest GRBs
 - Next: Automatic analysis of the full sample

Fermi GBM detects gamma-rays from volcanic lightning

- A Terrestrial gamma flash (TGF) was detected with Fermi GBM from volcanic lightning from Hunga Tonga–Hunga Ha'apai on Jan 15, 2022
- ◆ GBM's observation of the TGF from space shows that electrons were accelerated upward by the volcanic plume
 - > The only lightning detectable by GBM was from the volcano (green dots).
 - Red cross shows the location of Fermi. Red circles show the extent of GBM TGF sensitivity
 - Briggs, Lesage, Schultz et al. 2022, Geophysical Research Letters https://doi.org/10.1029/2022GL099660

lightning radio signals, TGF ± 1 min

Magnetar Giant Flare

◆ GBM + LAT short GRB 200415A
 + INTEGRAL, Konus

IPN localization: 7-arcmin² region, Overlaps with Sculptor galaxy (NGC 253)

Svinkin, D. et al. Nature 589, 211 (2021)

- first detailed spectral analysis of a giant flare by GBM (no saturation)
- shortest measured timescales in γ-rays (77 µs)
- first direct evidence for relativistic outflows in MGFs
- first detection at GeV energies of a giant flare with the LAT
- ➤ archival extragalactic MGF searches ⇒ about 1 extragalactic MGF per year among the GBM GRBs (Burns et al. 2021)

Gravitationally lensed GRB

- ◆ Veres et al. 2021 ApJ, 291, L30
- ◆ GRB 210812A two peaks
- ◆ ~33 s time delay
- Consistent spectra & pulse
- Lens: about 1 million Solar mass

Follow-up and Collaborative Projects

Goldstein et al. 2019

- ◆ GBM routinely follows up external triggers ⇒ Sub-Threshold Targeted Search
 - > GRBs detected by other instruments (& not triggered GBM), IceCube neutrino alerts, FRBs
 - Interesting cases for GBM Sub-Threshold detections:
 - ► Swift GRB 191016A, detection of OT by TESS (Smith et al. 2021)
 - ► Swift GRB 210905A, GBM GCN #30779, VLT/X-shooter: z=6.318
 - ► Swift GRB 220117A, GBM GCN #31497, VLT/X-shooter: z=4.961
 - ► First millimeter afterglow by ALMA (Laskar et al. 2022), Swift/BAT-GUANO SGRB 211106A (INTEGRAL SPI/ACS notice), GBM GCN #31055
- ◆ Untargeted Sub-Threshold Search https://gcn.gsfc.nasa.gov/fermi_gbm_subthresh_archive.html
 - > New: advanced background, runs on all data, Bayesian classification of events
- GBM as trigger for Swift-BAT GUANO :
 - recovers Swift-BAT event data and provide arcminute-scale locations
- IceCube follow-up of Swift/GBM triggers ⇒ Abbasi et al. 2022
- ◆ Search for gamma-ray counterparts to O3 GW events ⇒ next talk by Joshua Wood

GBM - LVK O4 Preparations

LVK Engineering Run: April 2023; Observing Run: March 2023

- ◆ LVK collaboration with GBM team (GRB-GW working group):
 - > Support innovative joint observations and sub-threshold searches
 - Consistent contact with LVK members
- Joint detections of a BNS mergers, both in GW and γ-rays (GRB)
 - > LV O2: GW170817 / GRB 170817A
 - > LV O3: -
 - LVK O4: with the anticipated improvements in sensitivity: $R_{GW-GRB}^{O4}=1.04_{-0.27}^{+0.26}~yr^{-1}$ (arXiv: 2111.03608v1)

- GBM data tools: native support for MOC map format
- Reducing localization systematics for targeted search
- Targeted search, new information on: probability for a short GRB, inclination angle of the source (in progress)

Conclusion

- ◆ Fermi-GBM: running smoothly for 14 years no degradation observed
- Most recent catalogs:
 - > 4th GBM GRB catalog A. von Kienlin et al. 2020
 - ➤ GRB spectral catalog Poolakkil et al. 2021
- Catalogs in preparation:
 - > 2nd time resolved spectral catalog E. Bissaldi et al.
 - ➤ TGF catalog O. Roberts et al. (10 years of data, ~1200 TGFs per year)
- GBM produces exciting results:
 - "Vulcanic" TGF
 - Extragalactic Magnetar Giant Flare
 - Lensed GRB
- ◆ Eagerly anticipating the next BNS merger events in LVK O4