

9th-15th October 2022



# INTERGALACTIC MAGNETIC FIELD STUDIES BY MEANS OF $\gamma$ -RAY EMISSION FROM GRB 190114C

#### Francesco Longo+

Paolo Da Vela, Guillem Martí-Devesa\*, Antonio Stamerra, Peter Veres\*, Francesco G. Saturni and Francesco Longo\*

\* on behalf of the Fermi-LAT Collaboration

\*francesco.longo@ts.infn.it

#### Summary

• Physical process

• Proper choice of the VHE primary spectrum

• CRPropa simulations for different IGMF settings

 Comparison between the simulated SEDs and lightcurve with Fermi/LAT

## Summary of a TeV $\gamma$ -ray's life absent any other process



### Summary of a TeV $\gamma$ -ray's life with an IGMF



## Probing the "weakest" IGMF through pair echoes from GRBs

• Since the pairs are deviated, the cascade emission is also delayed (Neronov et al. 2009):

$$\lambda_{\rm B} >> D_{\rm e} \qquad \qquad T_{delay} \simeq 7 \times 10^5 (1 - \tau^{-1}) (1 + z)^{-5} \left[ \frac{E}{0.1 TeV} \right]^{-5/2} \left[ \frac{B}{10^{-18} G} \right]^2 \ s$$

$$\lambda_{\rm B} << D_{\rm e} \qquad \qquad T_{delay} \simeq 10^4 (1 - \tau^{-1}) (1 + z)^{-2} \left[ \frac{E}{0.1 TeV} \right]^{-2} \left[ \frac{B}{10^{-18} G} \right]^2 \left[ \frac{\lambda_{B0}}{1 kpc} \right] \ s$$

$$F_{delay} \sim \frac{T}{T_{delay} + T} F_0$$

• The delayed emission is strongly diluted

### "Delayed" cascade emission



#### **Primary Spectrum**

• Since the pairs are deviated, the cascade emission is also delayed (Neronov et al. 2009):



$$\frac{dN}{dE} \propto \left(\frac{E}{0.4 TeV}\right)^{-2.5 - 0.2 * \log(E/0.4 TeV)}$$

• We extrapolated the flux up to the first 6s after the prompt emission

#### CRPropa simulations

- Source:
  - Point source
  - Z=0.42
  - Logparabola spectrum between 200 GeV and 10 TeV, 1e6 primary photons
  - Minimum energy of cascade photons: 0.05 GeV
- Magnetic Field:
  - Turbulent magnetic field with a Kolmogorov spectrum and different  $\boldsymbol{B}_{\rm rms}$
  - Correlation length: ≥ 1 Mpc
- Observer:
  - Sphere with radius 1.6 Gpc with the source at the center

#### Starting time



• In order not to look for the echo emission in a time window where the GRB is still ongoing in the Fermi band we started counting the cascade photons from T-To= $2\times10^4$  s

## SEDs vs observation time: 15 days



#### SEDs vs observation time: 1 month



#### SEDs vs observation time: 3 months



#### SEDs vs observation time: 9 months



#### SEDs vs observation time: 24 months



#### Integral flux 1 GeV < E < 100 GeV



### Fermi/LAT sensitivity (95% CL)



#### **Conclusions**

• We simulated the cascade delayed emission from GRB 190114C for different IGMF settings and using, as VHE primary spectrum, the GRB model published by MAGIC coll.

• We performed the Fermi/LAT analysis from the end of the GRB up to 24 months

• Comparing the simulated SEDs and lightcurve with the Fermi/LAT limits no constraints can be placed on the IGMF strength

