

Radiation-mediated shocks in GRBs observed by Fermi

10th Fermi symposium, October 14th Filip Samuelsson, Felix Ryde, Christoffer Lundman

Samuelsson, Lundman, Ryde. (2022) ApJ, 925:65 Samuelsson & Ryde. (2022) arXiv:2206.11701

The motivation

The gamma-ray burst jet

- · GRB prompt emission mechanism remains unknown
- Early work predicted quasi-blackbody emission from the photosphere; observed spectra generally broader

Subphotospheric dissipation

- Dissipation alters the spectrum, not necessarily hard
- Subphotospheric shocks are radiation mediated
- Separation in scales makes simulations expensive
- Need for an approximate method

Lundman+ (2018)

The approximation

The Kompaneets RMS approximation (KRA)

- Fermi acceleration of photons in RMS converging flow ≈ repeated scatterings with hot, thermal electrons
- The Kompaneets RMS approximation (KRA)
- ~5 orders of magnitude faster

Samuelson+ (2022)

6

Time resolved spectrum GRB 150314A

• Assuming $\Gamma=300$ one gets

$$(\beta \gamma)_{\rm u} = 1.89, \quad \theta_{\rm u} = 8.8 \times 10^{-5}, \quad \frac{n_{\gamma}}{n} = 2.0 \times 10^{5}$$

What do photospheric RMS spectra look like?

Estimating shock initial conditions

- Without context, shock initial conditions can be anything
- Here, we employ a simple internal collision framework

Two internal shock scenarios

- Early and delayed acceleration scenario
- Delayed scenario gives smooth spectra with a highenergy cutoff and a hardening in X-rays

Fit with a cutoff power-law (CPL) function

- Forward fold through Fermi GBM response matrix
- Spectra generally well fitted with a CPL; complexity outside detector window

150 fits with a CPL function

Additional X-ray break

- Evidence for spectral complexity in GRB fits
- 150 fits allowing for an additional break below the peakenergy

Samuelsson & Ryde (2022). Ryde (2005), Guiriec+ (2011), Axelsson+ (2012), Ravasio+ (2018, 2019), Oganesyan+ (2018, 2019), Gompertz+ (2022)

Conclusions

- Radiation mediated shocks are expected below the photosphere of a GRB
- KRA allows us to bridge the gap between theory and observations
- Generated spectra are very soft, similar to observations, and an additional break in X-rays is expected within the model

Samuelsson, Lundman, Ryde. (2022) ApJ, 925:65 Samuelsson & Ryde. (2022) arXiv:2206.11701

A post doc position is available at the Oskar Klein Center and KTH in Stockholm on GRB research

Reference number S-2022-1814

https://kth.varbi.com/en/what:job/jobID:552765/

Extra slides

The Kompaneets RMS approximation (KRA)

- Fermi acceleration of photons in RMS converging flow ≈ repeated scatterings with hot electrons
- The Kompaneets RMS approximation (KRA)

Verification of the approximation

A minimal jet model

- Implementing the KRA in a minimal jet scenario
- All zones account for adiabatic cooling and thermalization

Parameters

Three parameters for the shape

Kompaneet's equation

Repeated scatterings of non-relativistic thermal electrons

$$\frac{\partial}{\partial \bar{r}} \left(\bar{r}^2 n \right) = \frac{1}{\epsilon^2} \frac{\partial}{\partial \epsilon} \left[\frac{\epsilon^4}{\bar{r}^2} \left(\theta \frac{\partial (\bar{r}^2 n)}{\partial \epsilon} + (\bar{r}^2 n) \right) + \frac{2}{3} \frac{\epsilon^3 (\bar{r}^2 n)}{\bar{r}} \right] + s$$
 Spectrum Heating Cooling Ad. cooling Sources

20

Lundman+ (2018); ApJ, 858:7

Degeneracy

Varying tau and theta_r without changing their product

Higher order effects at the photosphere

- We never observe a Planck or Wien spectrum
- High-latitude emission and fuzzy photosphere including angle dependent beaming and adiabatic cooling

