





# **Population Synthesis of** canonical pulsars

#### Ludmilla Dirson

Strasbourg Observatory, France

Jérôme Pétri, Dipanjan Mitra







## **Outline**

1 Galactic pulsar population

2 Model

3 Results

4 Summary

# Galactic pulsar population Observations

• ~ 3000 pulsars detected in radio (Manchester et al. 2005).

Also bright in X-rays, optical and gamma-rays.

 Over 250 gamma-ray pulsars discovered with Fermi-LAT (Abdo et al. (2013), Smith et al. (2019)).



# **Pulsar population synthesis**Observations

## Canonical population:

- Non-binaries
- P > 20 ms
- No magnetars

| $\log(\dot{E})$ (in W) | $N_{\rm tot}$ | $N_{\rm r}$ | $N_{ m g}$ | $N_{\rm rg}$ |
|------------------------|---------------|-------------|------------|--------------|
| > 31                   | 2             | 0           | 0          | 2            |
| > 28                   | 197           | 101         | 35         | 61           |
| total                  | 2665          | 2553        | 63         | 84           |

Ė: spin-down luminosity

#### PSRCAT plot (Catalogue v1.67)



Highcharts.com

#### **Galactic pulsar population**

Pulsar population synthesis (PPS)

#### **Goals:**

- Inferring the underlying properties of pulsar population (P,P,B,d)
- Predictions for future surveys (SKA)

#### 2 approaches:

- Snapshot (Taylor & Manchester (1977), Lyne et al. (1985))
- Evolution (Faucher-Giguère & Kaspi (2006))

#### **Model:**

#### Magnetosphere

 Force-free magnetosphere + evolution of the inclination angle + magnetic field decay applied to both radio and gamma-ray pulsars

#### **Emission:**



- Polar cap model for radio emission
- Striped wind model for the pulsed gamma ray emission

#### Generating a synthetic pulsar population

- 10<sup>7</sup> pulsars simulated with constant birth rate
- Initial intrinsic parameters:
  - B<sub>0</sub>: initial magnetic field (constant)
  - P<sub>o</sub>: initial period
  - $a_0$ : inclination angle at birth
  - n<sub>o</sub>: unit vector along the rotation axis
  - v<sub>0</sub>: initial kick velocity
  - (x<sub>0</sub>,y<sub>0</sub>,z<sub>0</sub>): initial position



• Pulsars are evolved from their birth to the present  $(P,P,\alpha,B,d)$ 

- Luminosity of the pulsar
  - Radio (Johnston et al. (2020))
  - Gamma (Kalapotharakos et al.(2019))

- Sensitivity of the instruments:
  - Fermi/LAT (gamma)
  - Radio ~0.15 mJy (Parkes and Arecibo)



- Beaming fraction:
  - Emission beaming toward us in radio and/or gamma

# Beaming fraction

# **Polar cap model** $\vec{B}$ **Striped wind** $\alpha$

## 2 Model P-P diagram

| $\overline{	au_{birth} \ (1/\mathrm{yr})}$ | $P_{mean}$ (ms) | $B_{mean}$ (T)      | $ar{	au_d}$                  |
|--------------------------------------------|-----------------|---------------------|------------------------------|
| 70                                         | 60              | $2.5 \times 10^{8}$ | $4.6 \times 10^5 \text{ yr}$ |

• More pulsars for lower P.

- Long period pulsars slow down less rapidly.
- Sensitive to the initial distributions of P, P and B. (Igoshev et al. 2022)
- Modelling the ISM



#### **Simulations**

| $\log(\dot{E})$ (in W) | $N_{ m tot}$ | $N_{\rm r}$ | $N_{\mathrm{g}}$ | $N_{ m rg}$ |
|------------------------|--------------|-------------|------------------|-------------|
| > 31                   | 3            | 0           | 1                | 2           |
| > 28                   | 238          | 87          | 47               | 104         |
| total                  | 2155         | 1864        | 122              | 169         |



#### **Observations**

| $\log(\dot{E})$ (in W) | $N_{\rm tot}$ | $N_{\rm r}$ | $N_{ m g}$ | $N_{\rm rg}$ |
|------------------------|---------------|-------------|------------|--------------|
| > 31                   | 2             | 0           | 0          | 2            |
| > 28                   | 197           | 101         | 35         | 61           |
| total                  | 2665          | 2553        | 63         | 84           |



## Spatial distribution







- Observed distance not accurately determined (model dependent).
- More refined treatment of the sensibility depending on the latitude

 Better description of the initial spatial distribution + birth kick velocity should be implemented.

• Take into account the galactic potential.

#### Effects of geometry and Smin on the detection of gamma pulsars

| Pulsar type              | Model | Geometry | Observations |
|--------------------------|-------|----------|--------------|
| $\overline{N_r/N_{tot}}$ | 84%   | 6%       | 95%          |
| $N_g/N_{tot}$            | 7%    | 84%      | 2%           |
| $N_r/N_{tot}$            | 9%    | 9%       | 3%           |

# Still a lot of gamma-ray pulsars to be detected!!

| Pulsar type              | $S_{min}$ | $S_{min}/2$ | $S_{min}/5$ |
|--------------------------|-----------|-------------|-------------|
| $\overline{N_r/N_{tot}}$ | 84%       | 76%         | 57%         |
| $N_g/N_{tot}$            | 7%        | 12%         | 26%         |
| $N_r/N_{tot}$            | 9%        | 12%         | 17%         |

# Deep follow-up surveys at 1.4 GHz of gamma-ray sources:

if glat 
$$< 2^{\circ}, S_{min} = 4 \times 10^{-15} \text{ Wm}^{-2}$$

#### Blind survey

$$S_{min} = 16 \times 10^{-15} \text{ Wm}^{-2}$$

## **Summary**

- Force-free evolution scenario + magnetic field decay + striped wind emission model for gamma-rays.
  - reproduce satisfactorily P-P diagram and the number of detected pulsars.
- PPS are valuable and reliable tool to constrain the basic physics of neutron star electrodynamics and for predictions.
- Future prospects:
  - Galactic potential
  - Effect of the ISM
  - Radio emission death line

Prediction for SKA (50 times more sensitive): ~ 27000 detected pulsars











# Thank you for your attention!

Ludmilla Dirson







# Backup

#### Generating a synthetic pulsar population

Pulsar's intrinsic parameters:

- B<sub>0</sub>: initial magnetic field (constant) (Gaussian in log space)
- P<sub>o</sub>: initial period (Gaussian)
- $\alpha_0$ : inclination angle at birth (Isotropic)
- n<sub>o</sub>: unit vector along the rotation axis (**Isotropic**)
- v<sub>0</sub>: initial kick velocity (Maxwellian)
- $(x_0, y_0, z_0)$ : initial position
- d: distance to Earth
- P and P: current period and its time derivative
- α, current inclination angle

#### **Beaming fraction: radio**

**Rotation axis** 



$$\rho \propto \frac{1}{\sqrt{P}}$$

• Pulsar *can* be detected if

$$\beta = |\xi - \alpha| \le \rho$$

or 
$$|\xi - (\pi - \alpha)| \le \rho$$

Lorimer, D. R. & Kramer, M. 2004, Handbook of Pulsar Astronomy

## P-P diagram





## P-P diagram



10<sup>1</sup>

### Age of detected pulsars



#### Age of detected pulsars



#### Radio luminosity and sensitivity

Radio flux density at 1.4 GHz:

Signal-to-noise ratio:

$$F_r = 9 \,\text{mJy} \left(\frac{d}{1 \,\text{kpc}}\right)^{-2} \left(\frac{\dot{E}}{10^{29} \,\text{W}}\right)^{1/4} 10^{F_j}$$
  $S/N = \frac{F_r}{S_{\text{survey}}}$ 

$$S/N = \frac{F_r}{S_{\text{survey}}^{\text{min}}}$$

• Minimum detectable flux of a pulsar survey:

$$S_{\text{survey}}^{\min} = S_0 \sqrt{\frac{\tilde{w_r}}{P - \tilde{w_r}}}$$

Parkes multibeam survey and Arecibo surveys have a sensitivity of  $\sim 0.15$  mJy

#### Gamma luminosity and sensitivity

$$L_{\gamma(2D)} = 10^{26.15 \pm 2.6} \text{ W} \left(\frac{B}{10^8 \text{ T}}\right)^{0.11 \pm 0.05} \left(\frac{\dot{E}}{10^{26} \text{ W}}\right)^{0.51 \pm 0.09}$$

Kalapotharakos et al. (2019)

#### Fermi/LAT sensitivity to pulsars:

- at galactic latitude  $< 2^{\circ}$  is  $F_{\min} = 4.10^{-15} \mathrm{W.m}^{-2}$
- For blind searches:  $F_{min} = 16.10^{-15} \text{W.m}^{-2}$

• Vacuum rotator:

$$\sin \alpha(t) = \sin \alpha_0 \exp \left(-t/\tau_{align}^{vac}\right)$$

In the MHD case,

$$\alpha \propto t^{-1/2}$$

• For a force-free magnetosphere, integral of motion is:

Philippov et al. 2014

$$\Omega \frac{\cos^2 \alpha}{\sin \alpha} = \Omega_0 \frac{\cos^2 \alpha_0}{\sin \alpha_0}$$

$$I\dot{\Omega} = -\frac{3}{2}$$

$$I\Omega \dot{\chi} = -\frac{3}{2}$$

$$I\dot{\Omega} = -\frac{3}{2} \frac{L_{\perp}}{\Omega} (1 + \sin^2 \chi)$$
$$I\Omega\dot{\chi} = -\frac{3}{2} \frac{L_{\perp}}{\Omega} \cos \chi \sin \chi.$$







| S/N | $N_{ m tot}$ | $N_{\rm r}$ | $N_{ m g}$ | $N_{\rm rg}$ |
|-----|--------------|-------------|------------|--------------|
| 3   | 6675         | 6489        | 109        | 77           |
| 5   | 4874         | 4688        | 109        | 77           |
| 10  | 2900         | 2714        | 109        | 77           |
| 15  | 2097         | 1911        | 109        | 77           |

| $B_{mean}$ (in T)   | $N_{ m tot}$ | $N_{\rm r}$ | $N_{\mathrm{g}}$ | $N_{ m rg}$ |
|---------------------|--------------|-------------|------------------|-------------|
| 10 <sup>7</sup>     | 23167        | 22425       | 370              | 372         |
| $1.5 \times 10^{7}$ | 17951        | 17284       | 334              | 333         |
| $5 \times 10^{7}$   | 6639         | 6310        | 173              | 156         |
| $10^{8}$            | 3591         | 3399        | 123              | 69          |
| $1.5 \times 10^{8}$ | 2398         | 2242        | 104              | 52          |

| $\sigma_b \ ({\rm in} \ { m T})$ | $N_{\rm tot}$ | $N_{\rm r}$ | $N_{ m g}$ | $N_{ m rg}$ | $P_{me}$ |
|----------------------------------|---------------|-------------|------------|-------------|----------|
| 0.1                              | 1957          | 1792        | 100        | 65          | 10       |
| 0.2                              | 2204          | 2051        | 97         | 56          | 20       |
| 0.3                              | 2452          | 2289        | 98         | 65          | 50       |
| 0.4                              | 2938          | 2766        | 104        | 68          | 100      |
| 1                                | 8204          | 7929        | 151        | 124         |          |

| $P_{mean}$ (in s) | $N_{ m tot}$ | $N_{\rm r}$ | $N_{ m g}$ | $N_{\rm rg}$ |
|-------------------|--------------|-------------|------------|--------------|
| 10                | 1541         | 1352        | 121        | 68           |
| 20                | 2068         | 1877        | 115        | 76           |
| 50                | 2970         | 2781        | 113        | 76           |
| 100               | 3654         | 3524        | 84         | 46           |

| birth rate (in $yr^{-1}$ ) | $N_{ m tot}$ | $N_{\rm r}$ | $N_{ m g}$ | $N_{\rm rg}$ |
|----------------------------|--------------|-------------|------------|--------------|
| 50                         | 17860        | 16770       | 707        | 383          |
| 100                        | 8535         | 8021        | 324        | 190          |
| 200                        | 4280         | 3989        | 181        | 110          |
| 300                        | 2211         | 2067        | 89         | 55           |