Tenth International Fermi Symposium 9th-15th October 2022

dakalophuravha2@gmail.com

Dakalo G. Phuravhathu

Prof. J.O Chibueze and Prof. M Boettcher

Overview

- ❖ Background Information
- Aims of the project
- Observation and Data reduction
- Results
- Conclusion

Introduction

❖ Radio galaxies are galaxies with an active nucleus (AGN = active galactic nucleus), harboring a supermassive black hole, powering relativistic beams (jets) of particles that extend over thousands of light years into intergalactic space.

Properties of radio galaxies (Active Galaxies):

- have a bright nucleus.
- are very luminous at radio wavelengths.
- are absolutely massive.
- emit synchrotron radiation.
- have gigantic jets pointing out of the galaxy.

Credit: Aurore Simonnet, Sonoma State University

Aims of the project

- (a) identify potentially interesting objects within the available MeerKAT fields for further study, based primarily on their radio morphology;
- (b) assemble available archival multi-wavelength data, including infrared, optical, and X-ray surveys as well as data from the Fermi Gamma-Ray Space Telescope;
- (c) build multi-wavelengths spectral energy distributions (SED) for those sources with sufficient multi-wavelength coverage; and
- (d) interpret them in the framework of AGN jet emission models to diagnose the physical properties of the jets and their environments.

Observation and Data reduction

- 64-dishes radio interferometer of 13.5 m-diameter each.
- Operational in UHF-band (0.58 1.0 GHz), L-band (0.9 1.67 GHz), S-band (1.73 3.5 GHz) see Jonas & MeerKAT team (2016).
- ~7" of resolution.
- MeerKAT's shortest baseline is 29 m and longest baseline is 8 km.

Observation and Data reduction cont...

- The observation for this project were done MeerKAT's L-band receiver configuration.
- Which has a bandwidth of 856 MHz and a central frequency of 1.28 GHz.
- Used the oxkat v1.0 software (Heywood 2020) to reduce and process the data on ilifu cluster.
- oxkat is a semi-automated Python-based reduction pipeline for MeerKAT data, currently optimised for L-band continuum observations.
- Steps which were followed in ilifu cluster are:
- → First generation calibration (1GC): Cross-calibration and initial imaging
 - → FLAG: Flagging
 - → Second generation calibration (2GC): Self-calibration

Observation and Data reduction cont...

Field name	Observation date	Synthesized beam	rms (µJybeam-1)
FRB 20171019A	18 October 2019	6".8 x 5".0	5.2
FRB 20190711A	09 September 2019	12".5 x 4".9	4.6
FRB 20190714A	28 September 2019	6".5 x 5".1	5.8

Table 1: Observations summary of the FRB fields from MeerKAT.

Results

86 radio galaxies were identified from all the three fields.

FRB 20171019A

FRB 20190711A

FRB 20190714A

• The interesting object identified is MKAT J221834.96-082253.50 from the FRB 20171019A field.

MKAT J221834.96-082253.50

Table 2: Counterparts

EDD 201710101

FRB 201/1019A							
Source name	Position (~)		Counterparts				
	WCS (FK5)		Infrared	Optical	High Energy		
	α	δ	2MASS	SDSS	2XMMi		
AGN1	22:18:34	-08:22:53	5	28	3		

Spectral index map

Archival multi-wavelength FITS image

Radio band (VLA Catalog data)

NVSS 221836-082120

Contour map with VLA data -8°15'00.0" 18'00.0" Declination (J2000) Intenisty (Jy/beam) 21'00.0" 24'00.0" 27'00.0" 36s 24s 22h18m12s 19m00s Right Ascension (J2000)

Infrared band (2MASX Extended Source Catalog data)

Contour map with 2MASX Extended Source Catalog data

Optical band (SDSS Catalog data)

SDSS J221837.35-082109.1

Contour map with SDSS Catalog data

High Energy band (2XMMi source data and 4FGL Fermi-LAT catalog)

- MKAT J221834.96-082253.50 with the X-ray counterparts from 2XMMi source catalog (green circles).
- There was no FITS file/image found in the X-ray band.
- There was no counterparts found in 4FGL Fermi-LAT catalog.

Spectral Energy Distributions (SED)

- Used the blazar code of Boettcher et al. (2013).
- Input parameters:
- → Injection luminosity [erg/s] = 2.5e44
 - → Gamma_min = 2.5e4
 - → Gamma_max = 3.8e4
 - → Escape time parameter (t_esc = eta*R/c) eta_esc = 0.25
 - → Magnetic field at z_0 [G] = 0.25
 - → Blob radius [cm] = 1.2e18
 - → Observing angle [degrees] theta_obs = 90
 - \rightarrow Redshift z = 0.168

Conclusion

- One radio galaxy was selected.
- Assembled available multi-wavelength data.
- Finding the Archival multi-wavelength FITS image.
- Built multi-wavelength spectral energy distributions (SED) for the core and hot-spot.

Tenth International Fermi Symposium

Thank you for your attention!

Dakalo G. Phuravhathu

dakalophuravha2@gmail.com

