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Origin of IceCube-Detected Neutrinos

Significant correlation of IceCube neutrinos with blazars
(chance coincidence p = 6∙10-7) – but can not be responsible 

for all IceCube neutrinos (e.g., Murase et al. 2018)

(Buson et al. 2022)



Basics of Neutrino Production

• p + p (N) → p + p/n + n0p
0 + n+p

+ + n-p
-

• p + g → p + p0

or   n + p+                

p0 → 2g

p+ → m+ + nm t = 2.55×10-8 s

p- → m- + nm

m+ → e+ + nm + ne t = 2.2×10-6 s

m- → e- + nm + ne

(spp ~ 0.1 mb)

(spg ~ 0.6 mb)



Neutrino Production in AGN Jets
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 In AGN jets, pg dominant over pp or pN.



Photo-pion induced neutrino 
production in relativistic jets

pg → p p0

n p+

Earth

𝛿 =
1

Γ (1 − 𝛽 𝑐𝑜𝑠𝜃)

Eobs = d E’



Photo-Pion Production Cross Section

s(pg→pp0) : s(pg→np+)  =  2:1

D+ resonance

(Morejon et al. 2019)



Photo-Pion Production 

Spectral index (n[e] ~ e-a) 
of target photon field
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(Mücke et al. 1999)

For realistic target photon fields, most interactions 
occur near threshold (at D+ resonance).



Photo-pion production - Energetics

At D+ resonance: 

s = E’p E’t (1 – bp’ m) ~ E’p E’t ~ ED+
2 = (1232 MeV)2

and E’n ~ 0.05 E’p

 To produce IceCube neutrinos (~ 100 TeV → En = 1014 E14 eV):

(i.e., E’n = 10 E14 d1
-1 TeV)

Need protons with               E’p ~ 200 E14 d1
-1 TeV

and target photons with     E’t ~ 1.6 E14
-1 d1 keV => X-rays!



The pg Efficiency Problem
• Efficiency for protons to undergo pg interaction ~ tpg = R spg nph

• Likelihood of g-ray photons to be absorbed ~ tgg = R sgg nph

spg sgg
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 Photons at Eg ~ GeV – TeV are heavily absorbed. 
 Cascade emission at lower energies. 
 Expect correlation with X-rays / soft g-rays.



Examples of neutrino – X-ray correlation 
without g-ray activity

IceCube-190730A – PKS 1502+106 

(IceCube Collaboration et al. 2019; Franckowiak
et al. 2020; Rodrigues et al. 2021)

• Neutrino event during a long-term radio 
outburst (started 2014).

• Low g-ray flux, but moderate X-ray activity.

IceCube-190730A

(Franckowiak et al. 2020)



Examples of neutrino – X-ray correlation without g-ray activity

IceCube-200107 – 3HSP J095507.9+35510 
(Giommi et al. 2020; Paliya et al. 2020; Krauss et al. 2020; Petropoulou et al. 2020)

• HBL at z = 0.5573 (Paiano et al. 2020; Paliya et al. 2020)

• HESE with uncertain energy (En ~ 330+2230 TeV)

• Bright X-ray flare on the day after the neutrino 
event (Swift ToO), but no g-ray flare. 

-270

(Paliya et al. 2020)



Photo-pion production –
Origin of Target Photons

To produce IceCube neutrinos (~ 100 TeV → En = 1014 E14 eV):

Need protons with               E’p ~ 200 E14 d1
-1 TeV

and target photons with     E’t ~ 1.6 E14
-1 d1 keV

(At least) two possible scenarios for target photons:

a) Co-moving with the emission region

 Et
obs ~ 16 E14

-1 d1
2/(1+z) keV

 Observed as hard X-rays

 Doppler boosted into observer’s frame

 Stringent constraints on co-moving energy 
density

 Typically large proton power requirements!

b) Stationary in the AGN frame

 Et
obs ~ 160 E14

-1/(1+z) eV

 Observed as UV / soft X-rays

 Doppler boosted into co-moving frame

 Strongly relaxed constraints on energy 
density

 Much lower proton power requirements!



Possible sources of external UV / soft X-ray target photons: 

• Broad Line Region? 

(Padovani et al. 2019)

• Slow-moving sheath 

(Tavecchio & Ghisellini 2005)

• Accretion flow (RIAF)

(Righi et al. 2019)

Photo-pion production –
Origin of Target Photons



Summary
• Production of IceCube neutrinos requires

• Protons of ~ PeV energies

• Target photons of co-moving UV / X-ray energies

• For IceCube neutrino production in AGN jets, external target photon fields strongly 
preferred over co-moving (electron-synchrotron) photon field. 

• gg opacity for co-spatially produced GeV – TeV g-rays is ~ 300 times larger than pg
efficiency 

=> Expect neutrino correlation with X-ray / soft g-ray activity more naturally than with 
GeV – TeV g-rays! 
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Spectral Energy Distribution 
of TXS 0506+056

FX ~ 10-12 erg/(cm2 s)

IC 170922A 
limits



Photo-pion production –
Origin of Target Photons

Constrain target photon luminosity and required proton 
power from 

• observed neutrino luminosity 
(L’n ~ 1.7×1042 d1

-4
erg/s for 2014 – 15 neutrino flare)

• limit on observed UV / X-ray flux 
(Fx ~ 10-12 erg cm-2 s-1 for TXS 0506+056)
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a) Co-moving target photon field

Photo-pion production –
Origin of Target Photons

X-ray flux limit => u’t < 9×10-4 R16
-2 d1

-4 erg cm-3

=> Lp,kin > 4.9×1052 R16 G1
2 erg/s

 Unrealistically large kinetic power;
requires very low B-field (B < 1 G) to suppress proton 

synchrotron below X-ray flux limit

=> Ruled out!

~



b) Stationary target photon field

Photo-pion production –
Origin of Target Photons

From UV / X-ray flux: u’t < 100 G1
2 Rt,17

-2 erg cm-3

 Lp,kin > 4.7×1047 d1
-4 Rt,17

2 R16
-1 erg/s

Below Eddington limit for MBH > 109 M0 => plausible.

Can suppress p-sy below UV/X-ray limit for B ~ 10 G.
 Plausible!

 Stationary UV / soft X-ray target photon field 
external to the jet is plausible!
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