Tenth International

Markus Böttcher*

Supported by the South African Research Chairs Initiative (SARChI) of the Department of Science and Innovation and the National Research Foundation of South Africa (grant no. 64789).

Origin of IceCube-Detected Neutrinos

Significant correlation of IceCube neutrinos with **blazars** (chance coincidence $p = 6 \cdot 10^{-7}$) – but can not be responsible for all IceCube neutrinos (e.g., Murase et al. 2018)

Basics of Neutrino Production

• p + p (N)
$$\rightarrow$$
 p + p/n + n₀ π^{0} + n₊ π^{+} + n₋ π^{-} ($\sigma_{pp} \sim 0.1 \text{ mb}$)
• p + $\gamma \rightarrow$ p + π^{0} ($\sigma_{p\gamma} \sim 0.6 \text{ mb}$)
or n + π^{+}

$$\pi^{0} \rightarrow 2\gamma$$

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$

$$\tau = 2.55 \times 10^{-8} \text{ s}$$

$$\pi^{-} \rightarrow \mu^{-} + \nu_{\mu}$$

$$\mu^{+} \rightarrow e^{+} + \nu_{\mu} + \nu_{e}$$

$$\tau = 2.2 \times 10^{-6} \text{ s}$$

Neutrino Production in AGN Jets

$$n_{ph} \sim \frac{L_{sy}}{\delta^4 < \varepsilon > m_e c^2 4\pi R^2 c} \sim 3 \times 10^{18} \varepsilon_{-6}^{-1} R_{16}^{-2} L_{sy,44} \delta_1^{-4} cm^{-3}$$

$$n_p \leq \frac{L_j}{\Gamma^2 m_p c^2 \pi R^2 c} \sim 10^4 R_{16}^{-2} \Gamma_1^{-2} L_{j,46} cm^{-3}$$

$$\varepsilon = \frac{E_{ph}}{m_s c^2}$$

$$\frac{t_{pp}}{t_{p\gamma}} \sim \frac{n_{ph}}{n_p} \sim 3 \times 10^{14} \frac{\Gamma_1^2 L_{\text{sy,44}}}{\epsilon_{-6} \delta_1^4 Lj_{,46}}$$

 \Rightarrow In AGN jets, py dominant over pp or pN.

Photo-pion induced neutrino production in relativistic jets

Quasar 30175 VLA 6cm image (c) NRAO 1996

Photo-Pion Production Cross Section

Photo-Pion Production

Center-of-Momentum energy

For realistic target photon fields, most interactions occur near threshold (at Δ^+ resonance).

Photo-pion production - Energetics

At Δ^+ resonance:

$$s = E'_p E'_t (1 - \beta_p' \mu) \sim E'_p E'_t \sim E_{\Delta^+}^2 = (1232 \text{ MeV})^2$$

and

$$E'_{v} \sim 0.05 E'_{p}$$

 \Rightarrow To produce IceCube neutrinos (~ 100 TeV \rightarrow E $_{v}$ = 10¹⁴ E $_{14}$ eV): (i.e., E' $_{v}$ = 10 E $_{14}$ δ_{1} TeV)

Need protons with $E'_p \sim 200 E_{14} \delta_1^{-1} \text{ TeV}$

and target photons with $E'_{t} \sim 1.6 E_{14}^{-1} \delta_{1} \text{ keV}$ => X-rays!

The pγ Efficiency Problem

- Efficiency for protons to undergo py interaction $\tau_{p\gamma} = R \sigma_{p\gamma} n_{ph}$
- Likelihood of γ -ray photons to be absorbed $\tau_{\gamma\gamma}$ = R $\sigma_{\gamma\gamma}$ n_{ph}

- \Rightarrow Photons at E_{γ} \sim GeV TeV are heavily absorbed.
- ⇒ Cascade emission at lower energies.
- \Rightarrow Expect correlation with X-rays / soft γ -rays.

Examples of neutrino – X-ray correlation without γ -ray activity

IceCube-190730A - PKS 1502+106

(IceCube Collaboration et al. 2019; Franckowiak et al. 2020; Rodrigues et al. 2021)

- Neutrino event during a long-term radio outburst (started 2014).
- Low γ -ray flux, but moderate X-ray activity.

(Franckowiak et al. 2020)

Examples of neutrino – X-ray correlation without γ-ray activity

<u>IceCube-200107 – 3HSP J095507.9+35510</u>

(Giommi et al. 2020; Paliya et al. 2020; Krauss et al. 2020; Petropoulou et al. 2020)

- HBL at z = 0.5573 (Paiano et al. 2020; Paliya et al. 2020)
- HESE with uncertain energy ($E_v \sim 330^{+2230}$ TeV)
- Bright X-ray flare on the day after the neutrino event (Swift ToO), but no γ -ray flare.

(Paliya et al. 2020)

Photo-pion production — Origin of Target Photons

To produce IceCube neutrinos (~ 100 TeV \rightarrow E_v = 10¹⁴ E₁₄ eV):

Need protons with

$${\rm E'_p} \simeq 200 {\rm E_{14}} \, \delta_1^{-1} \, {\rm TeV}$$

and target photons with $E'_{t} \sim 1.6 E_{14}^{-1} \delta_{1} \text{ keV}$

$$E'_{t} \sim 1.6 E_{14}^{-1} \delta_{1} \text{ keV}$$

(At least) two possible scenarios for target photons:

- a) Co-moving with the emission region
- \Rightarrow E_t^{obs} ~ 16 E₁₄⁻¹ $\delta_1^2/(1+z)$ keV
- ⇒ Observed as hard X-rays
- ⇒ Doppler boosted into observer's frame
- ⇒ Stringent constraints on co-moving energy density
- ⇒ Typically large proton power requirements!

- b) Stationary in the AGN frame
- \Rightarrow E_t obs ~ 160 E₁₄ -1/(1+z) eV
- ⇒ Observed as UV / soft X-rays
- ⇒ Doppler boosted into co-moving frame
- ⇒ Strongly relaxed constraints on energy density
- ⇒ Much lower proton power requirements!

<u>Photo-pion production –</u> <u>Origin of Target Photons</u>

Possible sources of external UV / soft X-ray target photons:

Broad Line Region?
 (Padovani et al. 2019)

 Slow-moving sheath (Tavecchio & Ghisellini 2005)

Accretion flow (RIAF)
 (Righi et al. 2019)

<u>Summary</u>

- Production of IceCube neutrinos requires
 - Protons of ~ PeV energies
 - Target photons of co-moving UV / X-ray energies
- For IceCube neutrino production in AGN jets, external target photon fields strongly preferred over co-moving (electron-synchrotron) photon field.
- $\gamma\gamma$ opacity for co-spatially produced GeV TeV γ -rays is ~ 300 times larger than p γ efficiency
- => Expect neutrino correlation with X-ray / soft γ -ray activity more naturally than with GeV TeV γ -rays!

Supported by the South African Research Chairs Initiative (SARChI) of the Department of Science and Innovation and the National Research Foundation of South Africa (grant no. 64789).

Senior Postdoc Opening at NWU

- Senior Postdoc in observational or theoretical extragalactic high-energy / multi-messenger astrophysics.
- Initially for one year, renewable up to 5 years, depending on satisfactory performance.
- The salary will be **ZAR 438 000** per year (~ US \$ 24 200 ~ € 24 900 income-tax free and significantly higher than a usual postdoc salary in South Africa).
- Prior postdoctoral experience highly desirable, but Ph.D. not more than 5 years ago.
- Institutional expectations:
 - publication of at least 4 refereed journal papers per year;
 - co-supervision of at least 1 M.Sc. or Ph.D. student per year;
 - participation in grant proposal writing at least one submission per year;
 - a moderate amount of participation in administration.
- Send CV, publication list, statement of research experience and interests, contact information of 3 references
- Application deadline: 20 October 2022
- Contact: Markus.Bottcher@nwu.ac.za

Thank you for your attention!

Markus Böttcher*

Any opinion, finding and conclusion or recommendation expressed in this material is that of the authors and the NRF does not accept any liability in this regard.

Backup

Spectral Energy Distribution of TXS 0506+056

Photo-pion production — Origin of Target Photons

Constrain target photon luminosity and required proton power from

- observed neutrino luminosity (L' $_{v}$ ~ 1.7×10⁴² δ_{1}^{-4} erg/s for 2014 15 neutrino flare)
- limit on observed UV / X-ray flux $(\mathsf{F_x} \sim 10^{\text{-}12} \text{ erg cm}^{\text{-}2} \text{ s}^{\text{-}1} \text{ for TXS 0506+056})$ $L'_{\nu} \approx \frac{1}{2} N_0 \, m_p c^2 \int_{\gamma_1}^{\gamma_2} \gamma_p^{-\alpha_p} \, |\dot{\gamma}_{\mathrm{p,p\gamma}}| \, d\gamma_p \approx 1.3 \times 10^{-14} \, N_0 \, u'_t \, \epsilon'_t^{-1} \, \mathrm{cm}^3 \, \mathrm{s}^{-1}$ $\dot{\gamma}_{p,p\gamma} \approx -c < \sigma_{p\gamma} f > \frac{u_t'}{\epsilon'_t \, m_e \, c^2} \, \gamma_p$ $= \frac{u_t' \, R^2 \, \delta^4 \, c}{d_L^2}$

Photo-pion production – Origin of Target Photons

a) Co-moving target photon field

X-ray flux limit =>
$$u'_t$$
 < 9×10^{-4} R_{16}^{-2} δ_1^{-4} erg cm⁻³
=> $L_{p,kin} \gtrsim 4.9 \times 10^{52}$ R_{16} Γ_1^2 erg/s

⇒ Unrealistically large kinetic power; requires very low B-field (B < 1 G) to suppress proton synchrotron below X-ray flux limit

=> Ruled out!

<u>Photo-pion production –</u> <u>Origin of Target Photons</u>

b) Stationary target photon field

From UV / X-ray flux:
$$u'_{t} < 100 \Gamma_{1}^{2} R_{t,17}^{-2} erg cm^{-3}$$

$$\Rightarrow L_{p,kin} \gtrsim 4.7 \times 10^{47} \, \delta_1^{-4} \, R_{t,17}^{2} \, R_{16}^{-1} \, erg/s$$

Below Eddington limit for $M_{BH} \gtrsim 10^9 M_0 => plausible$.

Can suppress p-sy below UV/X-ray limit for B ~ 10 G. ⇒ Plausible!

⇒ Stationary UV / soft X-ray target photon field external to the jet is plausible!