Radiation and Polarization from Magnetic Reconnection in Blazars

Haocheng Zhang (NPP Fellow/NASA GSFC)

haocheng.zhang@nasa.gov

Scientific Goals and Methods

- Blazars exhibit highly variable multi-wavelength emission, implying strong particle acceleration in very localized regions.
- ☐ Magnetic reconnection is an efficient particle acceleration mechanism in a magnetized blazar emission region.
- Previous works have not thoroughly explored the multi-wavelength radiation and polarization signatures from reconnection.
- ☐ We use coupled particle-in-cell and polarized radiation transfer simulations to study observable patterns under first principles.
- ☐ We focus on the dependence of variability on the physical conditions in the blazar emission region.

Take Away Messages

- ☐ Reconnection exhibits a harder-when-brighter trend in spectrum.
- ☐ Higher-energy bands are more variable in flux and polarization.
- ☐ Fast gamma-ray flares result from synchrotron self Compton by dense nonthermal particles at plasmoid merger sites.
- Optical polarization angle swings are correlated to multi-wavelength flares, due to stream of nonthermal particles around the post-merger plasmoid.
- ☐ Polarization degree drops during angle swings.
- ☐ Flux and polarization are more variable with lower guide field in the reconnection region. Angle swings are only possible with very low guide field strengths.

Harder-When-Brighter Trend

☐ Particles are accelerated to maximal energy very efficiently, then gradually cool down by radiation. \square Particles beyond the cooling break occupy less Thus the spectrum is hard at high states.

More Variable at Higher Energies

- Higher-energy particles cool faster.
- regions, resulting in higher polarization degree.
- ☐ Those regions are mostly plasmoid mergers, where the acceleration and magnetic evolution are the strongest, leading to stronger variability.

Fast y-ray Flare and Angle Swing

- Plasmoid mergers make secondary reconnection, leading to dense newly accelerated particles.
- High density boosts synchrotron self Compton by n^2 , making γ -ray flashes.
- New particles may stream along the magnetic field lines enveloping the post-merger plasmoid, resulting in polarization angle swings.

Variability and Guide Field

- ☐ Lower guide field leads to stronger reconnection and more plasmoids.
- ☐ More plasmoids imply more disordered magnetic field and more plasmoid mergers.
- ☐ Strong plasmoid mergers lead to flares and ☐ polarization angle swings.

References

- ☐ Zhang et al., 2018, ApJL 862, L25
- Zhang et al., 2020, ApJ 901, 149
- Zhang et al., 2021, ApJ 912, 129
- Zhang et al., 2022, ApJ 924, 90