Cyg X-3:

Powerful γ-ray flares during 2017–21.

Modelling and interpretation.

With Denys Malyshev, Masha Chernyakova and Dave Green

Cyg X-3 – a puzzling microquasar

- A very luminous radio and X-ray source, Wolf-Rayet + either a low-mass BH (most likely) or NS; a very short (for HMXBs) P = 4.8h, L/L_{Edd} up to ~1.
- A likely BH–BH or BH-NS progenitor and merger candidate (Belczyński+13).
- A hard state with a radio/X-ray correlation similar to BH binaries.
- Major radio flares (≤20 Jy) and strong γ-ray emission in the *soft*, *disc dominated state*, unlike the jet quenching in BH LMXBs, but similar to luminous blazars.

High-energy γ-rays from Cyg X-3

AAZ+2018: a study of *Fermi* γ-ray and radio emission up to MJD 58000

New results

Radio vs. γ-ray correlation

• A strong positive correlation at zero lag between GeV γ-rays and radio, using all -ray detections with S/N>2:

γ-ray modulation at the orbital period

The Lomb-Scargle analysis taking into account the observed increase of the orbital period. The obtained period agrees with that from X-rays.

γ-ray modulation at the orbital period

Orbital modulation of γ -rays during the flaring periods.

The γ -rays have the *maximum* close to the superior conjunction.

X-rays undergo wind absorption, thus their *minimum F* is at the superior conjunction (black hole behind the donor).

A model for the GeV modulation

Compton scattering in the jet

 The relativistic electrons in the jet Compton upscatter stellar photons to GeV energies.

 Highest scattering probability for electrons moving towards the stellar photons.

• Relativistic electrons emit along their direction of motion.

• Thus, most of the all emission is toward the star. The maximum of the observed emission is when the jet is behind the star.

Fit of this model to the folded γ-ray light curve from our 2018 paper

 γ -ray emission region at $\sim (2-3) \times$ stellar separation $\sim 10^{12}$ cm $\sim 10^6$ $R_{\rm g}$. The jet is misaglined w/r the binary axis, $\theta \gtrsim 30^{\circ}$, and relatively slow.

This analysis will be updated using the present, much better, data.

Radio/X-ray correlations and time lags

• 15 GHz radio: no lag w/r to soft X-rays in the hard spectral state, but a highly significant ~50 d lag in the soft state.

Jet launching mechanisms

- Extraction of spin energy of a rotating BH (Blandford & Znajek 77; Tchekhovskoy+11; McKinney+12). $P_{jet} = \kappa a_*^2 B_{\parallel}^2 R_g^2 c$.
- Collimation and acceleration by disc poloidal magnetic field (Blandford & Payne 1982). A much lower jet power.
- Both mechanisms require the presence of a vertical/poloidal field.

BH LMXBs vs. Cyg X-3

Conclusions

- Very strong activity in γ -rays and radio during 2017–21.
- No measurable lag between radio and γ -rays ($\ll 1$ day).
- Modulation by a factor of ~ 4 of γ -rays at the orbital period.
- Modelled by the jet with electrons acceleration only at $z\sim10^6R_{\rm g}$, where they anisotropically upscatter the stellar radiation.
- The jet is misaligned by $\theta \ge 30^{\circ}$ with respect to the binary axis.
- A ~50 d lag of radio emission vs. soft X-rays, modelled as delayed advection of magnetic flux from the donor above a threshold \dot{M} due to an onset of disk magnetic outflows.
- BH LMXBs do not reach that threshold \dot{M} .
- The lag time scale: viscous time scale at the disc outer edge.
- Planned IXPE observations: 2022-10-13, 2022-10-31.