Tenth International

Indirect Dark Matter Searches with Fermi-LAT

Chris Karwin*

NASA Postdoctoral Program Fellow NASA Goddard Space Flight Center

Outline

- Dark Matter (DM)
- The GC excess
- The Milky Way Dwarf Spheroidal Galaxies
- The Andromeda Galaxy
- Additional Searches
- Future Directions
- Summary and Conclusions

The Dark Matter Paradigm

- Evidence for DM is found at all cosmological scales.
- Matter-energy density of the Universe:
 - o Baryons: 4%
 - o Dark Matter: 26%
 - o Dark Energy: 70%

Detecting Dark Matter

- Historically, DM has been thought to likely be a particle.
- Discovering DM will require complementarity between different search methods and targets.

Overview of Dark Matter Searches

Numerous dark matter searches with the LAT:

- Galactic center
- MW dwarf spheroidal galaxies
- LMC and SMC
- Dark matter sub-halos
- Milky Way halo
- M31 (center and halo)
- Extragalactic gamma-ray background

Observing the GC

Observing the GC

- An excess above model predictions has been observed, although with significant systematic uncertainties.
- Leading explanations include:
 - 1. Mid-modelling of the Galactic diffuse along the line of sight.
 - 2. An unresolved point source population, i.e. millisecond pulsars.
 - 3. DM annihilation.

The GC Excess Spectrum

 10^{6}

Spherically Symmetric or Tracing Stellar Populations??

Spherically Symmetric

- Consistent with an NFW profile with an inner slope of ~1.1-1.3
- Centroid is consistent with dynamical center of Galaxy, although may be slightly offset.

Tracing Stellar Populations

• Traces stellar populations in the X-shaped bulge, boxy bulge, and nuclear bulge.

Spherically Symmetric or Tracing Stellar Populations?

Possible Evidence For Dark Matter Annihilation In The Inner Milky Way From The Fermi Gamma Ray Space Telescope

Lisa Goodenough¹ and Dan Hooper^{2,3}

Oct 2009: https://arxiv.org/abs/0910.2998

Background model systematics for the Fermi GeV excess

Francesca Calore,^a Ilias Cholis^b and Christoph Weniger^a

Mar 2015: https://arxiv.org/abs/1409.0042

Dark matter interpretation of the *Fermi*-LAT observation toward the Galactic Center

Christopher Karwin,* Simona Murgia,† and Tim M. P. Tait‡

May 2017: https://arxiv.org/abs/1612.05687

The Fermi-LAT GeV excess as a tracer of stellar mass in the Galactic bulge

Richard Bartels 1*, Emma Storm¹, Christoph Weniger¹ and Francesca Calore² Oct 2018: https://arxiv.org/abs/1711.04778

Galactic bulge preferred over dark matter for the Galactic centre gamma-ray excess

Oscar Macias^{1*}, Chris Gordon ², Roland M. Crocker³, Brendan Coleman², Dylan Paterson², Shunsaku Horiuchi ¹ and Martin Pohl^{4,5}

May 2018: https://arxiv.org/abs/1611.06644

Strong evidence that the galactic bulge is shining in gamma rays

Oscar Macias, a,b,c Shunsaku Horiuchi, a Manoj Kaplinghat, b Chris Gordon, b Roland M. Crocker b and David M. Nataf b

Sep 2019: https://arxiv.org/abs/1901.03822

Characteristics of the Galactic Center excess measured with 11 years of *Fermi*-LAT data

March 2021: https://arxiv.org/abs/2101.04694

Assessing the Impact of Hydrogen Absorption on the Characteristics of the Galactic Center Excess

Martin Pohl^{1,2}, Oscar Macias^{3,4}, Phaedra Coleman⁵, and Chris Gordon⁵

April 2022: https://arxiv.org/abs/2203.11626

A Phantom Menace: On the Morphology of the Galactic Center Excess

Samuel D. McDermott, Yi-Ming Zhong, and Ilias Cholis³

Sep 2022: https://arxiv.org/abs/2209.00006

Point-like (i.e. millisecond pulsars) or Smooth (i.e. DM)??

favors a point-like interpretation.

Point-like (i.e. millisecond pulsars) or Smooth (i.e. DM)??

Evidence for Unresolved γ -Ray Point Sources in the Inner Galaxy

Samuel K. Lee, 1,2 Mariangela Lisanti, Benjamin R. Safdi, Tracy R. Slatyer, and Wei Xue 1

Feb 2016: https://arxiv.org/abs/1506.05124

Strong Support for the Millisecond Pulsar Origin of the Galactic Center GeV Excess

Richard Bartels,* Suraj Krishnamurthy,† and Christoph Weniger‡

Feb 2016: https://arxiv.org/abs/1506.05104

Revival of the Dark Matter Hypothesis for the Galactic Center Gamma-Ray Excess

Rebecca K. Leane 1,* and Tracy R. Slatyer 1,2,†

Dec 2019: https://arxiv.org/abs/1904.08430

Characterizing the nature of the unresolved point sources in the Galactic Center: An assessment of systematic uncertainties

Laura J. Chang, Siddharth Mishra-Sharma, Mariangela Lisanti, Malte Buschmann, Nicholas L. Rodd, and Benjamin R. Safdi

Jan 2020: https://arxiv.org/abs/1908.10874

Testing the Sensitivity of the Galactic Center Excess to the Point Source Mask

Yi-Ming Zhong[®], Samuel D. McDermott[®], Ilias Cholis, and Patrick J. Fox²

June 2020: https://arxiv.org/abs/1911.12369

Foreground mismodeling and the point source explanation of the Fermi Galactic Center excess

Malte Buschmann, Nicholas L. Rodd, Senjamin R. Safdi, Laura J. Chang, Siddharth Mishra-Sharma, Mariangela Lisanti, and Oscar Macias, And Oscar Macias

July 2020: https://arxiv.org/abs/2002.12373

The enigmatic Galactic Center excess: Spurious point sources and signal mismodeling

Rebecca K. Leane and Tracy R. Slatyer

Sep 2020: https://arxiv.org/abs/2002.12371

The Status of the Galactic Center Gamma-Ray Excess

Dan Hooper

Sep 2022: https://arxiv.org/pdf/2209.14370.pdf

The Milky Way Dwarf Spheroidal Galaxies

- Projected sensitivity is for 60 dwarfs and 15 years.
- Combined search in production with LAT, HAWC, HESS, MAGIC, and VERITAS.
- Also working on updated comprehensive dwarf analysis (following Albert+17) within LAT DMNP working group (led by myself, Alex McDaniel, and Marco Ajello), which will include:
 - o More data
 - Most recent dwarf census
 - Improved handling of astrophysical mis-modeling
 - J-factor systematic uncertainty

The Andromeda Galaxy

- Reported excesses towards inner galaxy and outer halo.
- See extra slides for recent papers.

Inner galaxy

Outer halo

Karwin+19
Spectral Shape Comparison

Additional Searches

Dwarf Irregular Galaxies

- Dark Matter Search in Dwarf Irregular Galaxies with the Fermi Large Area Telescope (link).
- Oct 2021
- Gammaldi et al.

Dark Subhalos

- Spatial Extension of Dark Subhalos as Seen by the Fermi-LAT and Implications for WIMP Constraints (link).
- April 2022
- Coronado-Blazques et al.

Additional Searches

Axionlike Particles

- (link).
- June 2020
- Meyer et al.

- Searching for Axionlike Particles from Core-collapse Supernovae with Fermi LAT's Low-Energy Technique (link).
- Nov 2021
- Crnogocevic et al.

Long Lived Mediators from the Sun

- Constraints on Dark Matter Scattering with Long Lived Mediators from Observations of the Sun with the Fermi Large Area Telescope (link).
- August 2022
- Serini et al.
- See talk at Parallel 7!

Future Directions: Galactic Diffuse Models

Three-dimensional spatial models for the cosmic ray and radiation field densities in the Milky Way

Improved models of the small-scale structure relating to the underlying gas distributions

Three-dimensional spatial distribution of Interstellar gas in the Milky Way

Johannesson+18 (link)

Improvements to the Galactic Diffuse model:

- 3D models for the CR and ISRF densities.
- 3D models for the gas distributions.
- Improved modeling of the small-scale structure in the gas.

Future Directions: Targets

Milky Way Dwarfs

Drlica-Wagner+20 (link)

The Magellanic System

Galaxy Clusters

Coma detection — Xi+18 (link)

The M31 System

Globular clusters: Mackey+10 (link)

Galaxy Groups

Lisanti+18 (link)

All-Sky Analysis
Galactic Center
Milky Way Dwarfs
Magellanic System
Milky Way Halo
M31 System
Galaxy Clusters
Galaxy Groups
EGB

Future Directions: New Missions and Synergies

Synergies with other Search Methods, Messengers, and Wavelengths:

- Complementarity with direct detection.
- Complementarity with other indirect searches, e.g. cosmic rays (i.e. anti-protons, anti-deuterons, and anti-helium) and radio (i.e. dwarfs and M31).

Deep Radio Surveys and Very-High Energy Observations with CTA:

• Search for milli-second pulsars in the GC.

The MeV Band with COSI (and future prospects for AMEGO-X, GECCO, and others):

- Measure the IC and Bremsstrahlung between 200 keV 5 MeV.
- Conduct multi-wavelength analysis of the Galactic diffuse, including radio, MeV, and LAT bands.
- Search for unresolved point-source population in the GC.
- Explore possible connections between the LAT GC excess and the MeV GC excess measured by COMPTEL and INTEGRAL.

New Instrument Designs:

• A wide FOV gamma-ray instrument with high sensitivity and improved angular resolution between 1-100 GeV, in order to resolve possible gamma-ray point sources in the Galactic center.

Summary and Conclusions

- There is an excess towards GC, possibly from mis-modeling of the foreground/background, unresolved point source population, and/or DM annihilation. However, interpretations are limited by systematic uncertainties relating to the Galactic diffuse.
- The Milky Way dwarfs remain a key constraint on DM interpretations of the GC Excess.
- Many other targets serve as complementary probes, as well as alternative possibilities.
- Future directions include improvements to the Galactic diffuse model, different targets, and synergies with other wavelengths and search methods (see previous three slides).

Thank you for your attention!

Extra: GC Excess

• Direct detection parameter space corresponding to the GC excess from Karwin+17

Extra: The Milky Way Dwarfs

kinematic scaling:

$$\frac{J(0.5)}{\text{GeV}^2 \text{ cm}^{-5}} \approx 10^{17.87} \left(\frac{\sigma_{\text{los}}}{5 \text{ km s}^{-1}}\right)^4 \left(\frac{d}{100 \text{ kpc}}\right)^{-2} \left(\frac{r_{1/2}}{100 \text{ pc}}\right)^{-1}$$

photometric scaling:

$$\frac{J(0^{\circ}.5)}{\text{GeV}^{2}\,\text{cm}^{-5}} \approx 10^{18.17} \left(\frac{\text{L}_{\text{V}}}{10^{4}\,\text{L}_{\odot}}\right)^{0.23} \left(\frac{d}{100\,\text{kpc}}\right)^{-2} \left(\frac{r_{1/2}}{100\,\text{pc}}\right)^{-0.5}$$

Pace and Strigari 19.

- Ackermann+15: 15 kinematically confirmed srcs
- Albert+17: 28 kinematically confirmed srcs, 17 candidate galaxies
- Updated analysis (Karwin et al. in prep): 37 kinematically confirmed srcs, 17 candidate galaxies
- J-factor determination: 1) calculated, 2) kinematic scaling relation, 3) photometric scaling relation

Extra: The Andromeda Galaxy

Recent Papers:

- June 2019: Search for Gamma-Ray Emission from Dark Matter Particle Interactions from the Andromeda and Triangulum Galaxies with the Fermi Large Area Telescope (link)
- July 2019: Fermi-LAT Observations of Gamma-Ray Emission Toward the Outer Halo of M31 (link)
- October 2020: GeV Gamma-ray Emission from M33 and Arp 299 (link)
- May 2020: The Gamma-ray Emission of Star-Forming Galaxies (link)
- Jan 2021: Dark Matter Interpretation of the Fermi-LAT Observations Toward the Outer Halo of M31 (link)
- April 2021: Gamma-Ray Image Reconstruction of the Andromeda Galaxy (link)
- June 2021: Giant Cosmic-Ray Halos Around M31 and the Milky Way (link)
- Sep 2022: The Android Gamma-ray Excess: Background Systematics of the Millisecond Pulsars and Dark Matter Interpretations (link)