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This talk

This talk will be a review on the things I did during my PhD. I will
present my perspectives on a few phenomena, results of what I did,
and talk about some things that I did not have time to do.

I Hadronic rescattering
I Exotic hadrons
I Cosmic rays
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How I view rescattering
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Features of rescattering

I Rescattering changes multiplicity and particle composition.

I Rescattering can give rise to collective flow.
I To some extent it can also give rise to jet quenching.
I Resonances produced in rescattering can be hard to observe.

Some resonances can be suppressed.
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Multiplicities - pp vs. PbPb @ 5.02 TeV

I Rescattering is implemented 2→ n processes, but not n→ 2,
so multiplicity will increase.
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”Rule of thumb”: MultipartonInteractions:pT0Ref = 2.345
Particle composition is still changed, e.g. by pp̄→ π+π0π−
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Flow and jet quenching

Phenomena such as collective flow has been observed, and are
usually attributed to the formation of a quark-gluon plasma (QGP)

These phenomena have also been observed in pA and pp collisions.
Open question: can this be explained by the QGP model?
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Flow - PbPb @ 5.02 TeV
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(Data from arXiv:1903.01790)

I Very good description at high multiplicities, where there is more
rescattering activity

I Other effects like ropes and shoving should also contribute, so the
result with only rescattering should be below data
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Jets IAA - PbPb @ 2.76 TeV
IAA is the PbPb/pp ratio of associated particle yield per trigger
8 GeV < p⊥,trig < 15 GeV, 4 GeV < p⊥,assoc < p⊥,trig
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(Data from arXiv:1110.0121)

NB: p⊥ spectrum is also modified by other mechanisms.
Would be interesting to study in more detail.
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NB: p⊥ spectrum is also modified by other mechanisms.
Would be interesting to study in more detail.
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Resonance formation and signal suppression
I did not had time to study resonance signal suppression, but this
would be an interesting thing to study.

I In Λ(1520)→ pK− decays, the pK− will be correlated. If one
of the outgoing particles rescatters, this correlation will be
suppressed [arXiv:1805.04361]

I Experiments indicate that K∗ signals are suppressed by
rescattering, but φ signals are not. This puts limits on the
duration of rescattering [arXiv:1910.14419]. How does this
compare to rescattering in Pythia?

I On the other side of the coin, rescattering produces new
resonances, but they can be difficult to detect. For example,
in the process πK → K∗ → πK, the πK mass spectrum is
unchanged.
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Hadronic rescattering - Summary

I Rescattering changes multiplicity. Can partially compensate
by setting MultipartonInteractions:pT0Ref = 2.345. In
the future, n→ 2 processes may also be implemented.

I Hadronic rescattering can give rise to collective flow
I To what extent does rescattering lead to jet quenching?
I To what extent does rescattering lead to resonance signal

suppression?
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Motivation: what is the nature of exotic hadrons?

Bag model or molecular state?
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Pentaquarks - background

I In 2015, LHCb observed two peaks when studying
Λb → J/ψpK− (Jψ → µ+µ−) decays, designated P+

c (4380)
and P+

c (4450).

I Another study with a larger LHCb data set in 2019 further
resolved this into three states: P+

c (4312), Pc(4440) and
P+
c (4457).

I Interpretation:

I P+
c (4312) is a Σ+

c D̄
0 molecular state.

I P+
c (4440) and P+

c (4457) are Σ+
c D̄

∗0 molecular states with
spins 1/2 and 3/2, respectively.

In our work, we also studied the χc1(3872) tetraquark.
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My work

The objective of my work was to create a framework for studying
exotic hadrons in Pythia. Specifically, we studied these
pentaquarks and the χc1(3872) tetraquark.

We implemented pentaquark production them through
Λb → P+

c K− decays, as well as exotic hadron resonances in
rescattering, e.g. Σ+

c D̄
0 → P+

c (4312) or D0D̄∗0 → χc1(3872).
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Results - the P+
c pentaquarks
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I Rescattering cross section is somewhat model-dependent.
I Rate of production from Λ0

b → P+
c K− decays is model

dependent, specifically on P+
c → p J/ψ branching ratio.
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Results - experimental signal
Recall that rescattering resonances are hard to observe directly.
The experimental pentaquark signal comes from
the P+

c → p J/ψ → pµ+µ− channel
(p⊥,p > 1 GeV and p⊥,µ > 0.5 GeV, and 2 < ηp,µ < 5)

P+
c (4312) P+

c (4440) P+
c (4457)

model 1 1× 10−6 1× 10−6 5× 10−7

model 2 5× 10−5 3× 10−5 4× 10−5

Ratio of signal to background

I Contributions are too small to be observed at LHCb
I But this study shows that there is an order of magnitude

difference between the two models

Marius Utheim Hadronic Interactions at High and Low Energies
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Results - the χc1(3872) tetraquark

For χc1(3872), we measured the production cross sections in pp
collisions at

√
s = 7 TeV. (σpp ≈ 90 mb)

I The inclusive production cross section has been measured by
LHCb1, and found to be 5.4± 1.3± 0.8 nb.

I Our measured exclusive cross section from rescattering is
0.04 nb, which is ∼ 1 % of the total production cross section.

While the overall contribution is small, future LHCb data may
make it possible to separate cross sections by production
mechanism. This could provide insights on how to model
tetraquark formation.

1Eur. Phys. J. C (2013) 73:2421
Marius Utheim Hadronic Interactions at High and Low Energies
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Conclusions

I Overall, rescattering does not seem to be a major production
mechanism for exotic hadrons.

I Rescattering will probably have a negligible effect on P+
c

pentaquark formation, but future data from LHCb can provide
insights on how to model χc1(3872).

I But this framework is just the beginning – the framework can
be extended to include other exotic hadrons, or other particles
such as deuterons.
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Cosmic rays

Image credit: A. Chantelauze, S. Staffi, L. Bret
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Objectives

Programs such as CORSIKA2 are used to simulate hadronic
cascades. These programs need models for generic hadron–nucleon
collisions.

Our goal is to implement such collisions in Pythia, so that it can
be used as a plugin to hadronic cascade simulations

To do this, we need to total and partial cross section at
perturbative energies, and describing PDFs for the relevant hadron
species.

2arXiv:1808.08226, arXiv:1902.02822 (www.iap.kit.edu/corsika/)
Marius Utheim Hadronic Interactions at High and Low Energies



19/25

Hadronic rescattering
Exotic hadrons

Cosmic rays

Objectives

Programs such as CORSIKA2 are used to simulate hadronic
cascades. These programs need models for generic hadron–nucleon
collisions.

Our goal is to implement such collisions in Pythia, so that it can
be used as a plugin to hadronic cascade simulations

To do this, we need to total and partial cross section at
perturbative energies, and describing PDFs for the relevant hadron
species.

2arXiv:1808.08226, arXiv:1902.02822 (www.iap.kit.edu/corsika/)
Marius Utheim Hadronic Interactions at High and Low Energies



19/25

Hadronic rescattering
Exotic hadrons

Cosmic rays

Objectives

Programs such as CORSIKA2 are used to simulate hadronic
cascades. These programs need models for generic hadron–nucleon
collisions.

Our goal is to implement such collisions in Pythia, so that it can
be used as a plugin to hadronic cascade simulations

To do this, we need to total and partial cross section at
perturbative energies, and describing PDFs for the relevant hadron
species.

2arXiv:1808.08226, arXiv:1902.02822 (www.iap.kit.edu/corsika/)
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Hadronic cross sections
For total cross sections, we use the Donnachie-Landshoff model:

σAB(s) = XABsε + Y ABs−η

The coefficient X does not care about flavour, and is taken to be
proportional to the effective number of quarks in accordance with
the Additive Quark Model (AQM),

neff = nd + nu + 0.6ns + 0.2nc + 0.07nb

The Y coefficients are more complicated, and I won’t go into
technical details here.
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Parton distribution functions
Based on the ansatz by Glück and Reya,3

f(x,Q2
0 = 0.26 GeV2) = Nxa(1− x)b,

and evolve to higher scales using the QCDNUM program.
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A simplified nuclear model

The atmosphere is made of nuclei, not nucleons. Angantyr is
not equipped to flexibly handle variable energies.
Instead, we use a simplified model where the highest pz produced
hadron may immediately interact again.
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Features of hadronic cascades

For a particle propagating in a medium of uniform density ρ, the
mean free path is l0 = 1/σρ.

In our article, we also study a toy model where the atmosphere
depends on the height h according to ρ(h) = ρ0e

−h/H .
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Outlook

With this work, also high energy interactions are available for
important hadron–nucleon combinations (yay!)

There is some room for improvement in Angantyr:
I Variable energies are not yet supported
I There is no detailed handling of nuclear remnants
I Collisions below ∼ 100 GeV are not modelled accurately

Despite these shortcomings, Pythia is around the level of
state-of-the-art models used by CORSIKA.
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Overall summary

I Implemented more general hadronic interactions in Pythia,
both at low and high energies

I Implemented hadronic rescattering in Pythia. It can give rise
to QGP-signatures, especially collective flow.

I First steps towards studying exotic hadrons with MC
generators (negative result: rescattering is probably not that
significant production mechanism)

I With these general hadronic interactions, Pythia offers a
plugin to hadronic cascade simulators
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