Motivation

- Enhancement of Λ/K^0_S ratio observed at intermediate p_T in high multiplicity pp, p–Pb and Pb–Pb collisions w. r. t minimum bias
- Production of multi-strange particles increases as a function of charged-particle multiplicity and follows a similar trend for different systems
- The origin of this phenomena still remains an open question

This Contribution

- Constrain particle production mechanisms in different collision systems by looking separately at particles produced by high-p_T jets and the underlying event
 - pp
 - Study the jet fragmentation properties in vacuum
 - Provide a reference for p–Pb and Pb–Pb systems
 - p–Pb
 - A new insight into understanding the origin of flow-like behavior observed at high multiplicity in small systems

Strategy

- Hard scattering tagged with high-p_T charged-particle jets
- Reconstruct V_0s and cascades within the “jet region” and the “underlying Event” region (UE)
- UE: Obtained with perp. cone method

Spectra

- The spectra of K^0_S, Ξ in jets are always harder than in UE
- Weak collision system dependence for particles produced in jets

Conclusions

- The enhancement of baryon to meson ratio in high-multiplicity events can be attributed to soft processes taking place during a collision
- The enhanced production of multi-strange hadrons in high-multiplicity events may also be explained by soft components of the collisions
- These soft processes are also responsible for the enhanced production of multi-strange hadrons in high-multiplicity events