In underlying event (UE) studies the components of particle production in hadronic interactions, which are not directly related to the hardest interaction, are studied.

These results are valuable inputs to tune Monte Carlo event generators, e.g., to describe the uncorrelated background in jet studies.

Judgment of the composite nature of nucleons, multi-par t on scatters becomes common at high energies.

Control the underlying-event activity by varying p_T^{leading}.

Compare the particle production in pp and p–Pb collisions with same N_{ch} and p_T^{leading}.

Where p_T^{leading} is the track with the highest transverse momentum in the event.

Data samples:
- p–Pb 2015: $\sqrt{s_{NN}} = 5.02$ TeV
- pp 2016: $\sqrt{s} = 5.02$ TeV

Larger UE activity is observed in p–Pb collisions as compared to pp collisions.

Number density and sum p_T density as a function of p_T^{leading} in transverse region (TS, transverse side).

Both number density and sum p_T density show steep rise for $p_T^{\text{leading}} \leq 5$ GeV/c. The number density saturates at high p_T^{leading} while sum p_T increases.

EPOS LHC underestimates the densities at high p_T^{leading}. Pythia 8 describes data in pp collisions while underestimates (overestimates) the low (high) p_T^{leading} part.

To investigate jet-like modifications, the transverse region (transverse side, TS) is subtracted from near region (near side, NS) and away region (away side, AS).

At high p_T^{leading}, pp and p–Pb data are in agreement suggesting the absence of medium effects.

At low p_T^{leading}, small difference is observed which is possibly due to the effect of flow.

Qualitatively similar behavior in pp and p–Pb collisions is observed, but the underlying-event activity is larger in p–Pb compared to pp collisions.

In the search for jet-like modifications, a similar number density in pp and p–Pb collisions at high p_T^{leading} values is observed.

The results suggest that the underlying event activity in p–Pb collisions share the same features as observed for pp collisions.