Physics motivation

In Pb–Pb ultrarelativistic collisions, lattice QCD predicts colour-deconfined phase, called quark-gluon plasma (QGP):

- Heavy quark produced in shorter time scales than QGP formation:
 - Experience full system evolution
 - Heavy quark energy loss in the medium
 - Modification of the p_T distribution of produced hadrons

Heavy-flavour hadronisation in presence of QGP medium:

- Two competing mechanisms:
 - Fragmentation
 - Coalescence
- Production yields of different hadron species are sensitive to modification of the hadronisation process in different collision systems
- Strange quarks abundant in the QGP
 - Enhancement of heavy-flavour mesons with strange quarks relative to non-strange heavy-flavour mesons

D_s meson reconstruction

D_s mesons measured via full reconstruction of decay-vertex topology in the resonant hadronic decay

- **Candidates**: triplets of tracks at midrapidity ($|\eta|<0.8$) with proper charge-sign combination
- To reject combinatorial background
 - PID of the tracks
 - Geometrical and kinematic selections based on displaced decay-vertex topology
- Candidate selection based on machine learning (ML)

D$_s$ meson yields in pp and Pb–Pb collision at $\sqrt{s_{NN}} = 5.02$ TeV

Non-prompt D_s yields in **pp** and **Pb–Pb** compared with prompt D_s in **pp** and **Pb–Pb**

$$R_{AA} = \frac{\frac{dN_{AA}}{d\eta}}{\frac{dN_{pp}}{d\eta}}$$

Prompt and non-prompt D_s

How to disentangle **Prompt** (sensitive to charm hadronisation) and **Non-prompt** D_s mesons (sensitive to beauty hadronisation via coalescence)?

- Beauty hadrons have $c\tau \sim 500\,\mu$m
 - Non-prompt D_s on average more displaced from the interaction vertex
 - Different topology and kinematic features
- ML to separate prompt, non-prompt D_s and combinatorial bkg

Outlook: ITS upgrade

Major upgrades of the ALICE Inner Tracking System (ITS) ongoing:

- **ITS crucial** for heavy-flavour measurements
 - **ITS2**: completely new detector
 - **ITS3**: innermost layers based on truly cylindrical structure with ultra-thin curved sensor

Relative statistical uncertainty

$$\frac{dN_{AA}}{d\eta} / \frac{dN_{pp}}{d\eta}$$

ALICE Preliminary

$0.1–10\%$ Pb–Pb, $\sqrt{s_{NN}} = 5.02$ TeV

- Non-prompt D_s from B_s decay kinematics
 - B_s from non-strange B-meson decays

TAMU model describes the observed trend

- Larger $R_{AA}(B_s^0)/R_{AA}(B^\ast)$

TAMU & **CMS**: PLB 796 168-190 (2019)

TAMU & **CMS**: PLB 735 445-450 (2014)

TAMU & **ITS2 & ITS3**: CERN-LHCC-2019-018

Pb–Pb data-driven method; pp reference: JHEP 05 (2021) 220

References: CMS: PB 296 146-190 (2010)

D_s meson production in pp and Pb–Pb collisions with ALICE

Stefano Politanò (stefano.politano@cern.ch) on behalf of the ALICE Collaboration, Politecnico and INFN Torino

148th LHCC, CERN (Genève) - 18/11/2021