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Signal from each LGAD will be read out 
using ALTIROC ASIC, an integrated chip 
(15x15 channels), based on 2 parts:
1. Analogue: amplifier, discriminator, TDC
2. Digital: data buffer and transmission 
• Pre-amplifier followed by Time Of Arrival 
(TOA) and Time Over Threshold (TOT).
• Minimize noise and power consumption 
• Target time resolution contribution <25 ps 
• Discriminator threshold of about 2 fC.

• HGTD requirements: defined by reaching the minimum collected 
charge required of 4 fC and a time resolution less than the maximum 
allowed in the end of lifetime (70 ps). [Q>4 fC , σ!<70 ps ]

• ALTIROC 1v2 bump bonded to HPK 3.1 LGAD performance at DESY TB:

The applied bias 
voltage in each HGTD 
section has to be 
increased accordingly 
to compensate for the 
radiation damage.
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Pileup: one of the main 
experimental challenges

• HGTD is expected to start data taking in 2027 and will be the
first large-scale application of LGAD technology to highly
reduce pileup in the forward region of the ATLAS detector
during the HL-LHC physics program.

ATLAS Collaboration. Technical design report: A high-granularity
timing detector for the ATLAS phase-II upgrade. Technical
report, 2020.

• More test beam campaigns have been performed at DESY
and CERN during 2020-2021 will provide more information
about the performance of LGAD sensors and ALTIROC for the
ATLAS HGTD.
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• Foreseen to start running in ~2027.
• Instantaneous Luminosity:
L ≈ 7.5×10"#cm$% s$&

• Integrated Luminosity (10 years):
L ≈ 4000 .b$&

• Up to 200 p-p interactions per
bunch crossing.

No replacement

Hybrid bare module: 1 LGAD bump bonded 
to 2 ASICs. Read-out by flex cable tail.

• Developed by CNM and RD50.
• n-p Si detector with an additional thin (<5 µm) and highly
dopped (10&') p-type multiplication layer with a high E field.
• Internal gain (𝑉()*+<800 V) >20 and >8 after irradiation.
• Hit efficiency >95 % at the end of lifetime.
• Excellent time resolution 𝜎,<30 ps before irradiation.

• Pad size of 1.3×1.3 𝑚𝑚%, 5 µm thickness ensures: 
• Occupancy <10% at lowest HGTD radius (120 mm). 
• Small dead areas between pads.
• Low sensor capacitance.
• Configurable in arrays.
• 15×15 pads, for a total area of 1.95×1.95 𝑐𝑚%

• Several studies have been performed on the LGADs radiation hardness 
using proton and neutron irradiations.
• Radiation tolerance: 2.5×10!"𝑁𝑒𝑞/𝑐𝑚# , 2 𝑀𝐺𝑦.

maximum allowed voltage

• LGADs and their readout ALTIROCs are optimized to reach
a σ!<50 ps per track up to the end of lifetime.
• Measurements from laboratory and test beams have shown
promising results in terms of Q, σ! and ε.

• At higher bias voltages, FBK, HPK and CNM sensors
satisfy the HGTD requirements.

• At lower bias voltages and at the same irradiation fluence
(2.5×10&< n), the FBK sensor shows a better performance.

• Better than 70 ps time resolution is obtained at 4 fC for
both HPK and FBK sensors at different fluences.
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• At different fluences, CNM B-dopped and HPK sensors were
proven to satisfy HGTD requirements under beam tests.
• Good efficiency (ε) was obtained for n and p irradiation CNM
Ga-dopped sensors at the same fluence of 1×10&#Neq/cm%.
• At higher n fluence of 3×10&<Neq/cm% , Q=5.31 fC, a
minimum bias voltage of 740 V and a Q=>! ≤ 3 fC are required to
get a good efficiency.

• Sr?@ source is used to characterize the LGAD response to
minimum ionizing particles (2 MeV electrons).

• Operation inside a climate chamber (down to -30 ºC).

• Dry air used to avoid condensation on the sensor surface.

• Time reference: using a non-irradiated LGAD with well
known performance and previously calibrated.

• Data collected at DESY in 2018-2019 with 5 GeV electrons.
• DURANTA telescope: position-dependent measurements.
• EUDET Trigger Logic Unit: synchronize the telescope with DAQ system.
• Operation inside a cooling box with dry ice (< -20 ºC).
• Time reference: SiPM and Cherenkov light emitting quartz bars.
• Trigger reference: FE-I4 readout chip.

Test Beam

• Goal: Study the performance of LGADs from different
manufacturers, with different fluences (protons (p), neutrons
(n)) up to 3×10&<Neq/cm% in laboratory and test beam.

• In both setups: The output analogue signal from the read-out
board is recorded with an oscilloscope for different bias
voltages and data is saved for offline waveform processing.

• Q: the most probable value of the fitted charge (the integral of the signal
area for each waveform) using a Landau-Gaussian convoluted function.
• σ$ ∶ Time difference between the DUT(CFD= 50%) and reference
sensor (CFD= 20%) as the Gaussian sigma of the distribution.

• ATLAS LGADs Timing Readout Chip: 

ATLIROC

Two instrumented double-sided layers mounted in two cooling/ support disks per end-cap .
Located in the gap
region between the
barrel and the end-
cap calorimeters.

HL-LHC: upgrade of ATLAS from 3-D to 4-D tracking system (ITK+HGTD)

ITK (Inner Tracker) HGTD (High Granularity Timing Detector)

• Extended pseudo-
rapidity (|𝜂|=4.0).
• Better position 
resolution (𝜎%) on 
tracks in the central 
than in the forward 
region.

• Silicon-based detector technology.
• High-precision time measurement: 30-50 ps 
time resolution per track.
• Assign time to each track in the forward 
region: 2.4<𝜂<4.0
• Improve pileup rejection by a factor of 6.
• Correct track-to-vertex association.  
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Performance measurements of LGAD sensors

Time resolution
deterioration due to 
radiation exposure 
after different amounts 
of delivered integrated 
luminosity at the HL-LHC

To mitigate the high pileup effect, ATLAS detector will be upgraded:


