Single Event Upsets and the ABCStar

- Single event upsets (SEUs): change of state (0→1 or 1→0) in memory/logic due to an electrical disturbance from radiation, resulting in wrong data and misconfiguration
- SEUs are an integrated effect: more fluence/dose means more SEUs
- ABCStars are the production version of ABC, with two subversions: V0 and V1
- Primary change: V1 has fully implemented triple modular redundancy (TMR) [2] of all registers – protects memory via voting

Results: Register Read Packet SEU Cross Section

- ABCStar registers store configuration and counters
- By filling the registers in a predictable way and comparing this to what is measured, we can identify SEUs (e.g., see upper-left plot: red circles indicate SEUs)
- N.B.: only one ABCStar V0 chip (upper-right: Chip 002) was tested between both campaigns – all others are V1
- SEU cross section is calculated by summing the numbers of 0→1 (n_0→1) and 1→0 (n_1→0) bit flips and normalizing to the integrated fluence (dΦ) between write/read times of register
- Cross sections per chip per running scenario per register type shown to the right (top: August; bottom: December)
- Lines without datapoints are 95% upper confidence bounds (i.e., no SEUs)
- Cross section for the V0 chip (red circle) is $(1.24 \pm 0.12) \times 10^{-13}$ cm2/proton; V1 chips (green circles) saw no SEUs: 95% upper confidence bound of 1.17×10^{-16} cm2/proton-- TMR works!

Experimental Setup

- Two testbeams were conducted at TRIUMF using 480 MeV protons in August & December 2020, each with four chips past the TID bump
- ASICs (circled) were mounted to Single Chip Boards (top-left) and mounted in beam (top-right), four at a time
- ASICs were connected to Nexys Video FPGA boards and read out using the ITk Strips DAQ software on a single PC

Results: Digital Current Measurements

- Measurements of the digital (IDDD) current for each chip were performed
- From the prototype version of the ABCStar, the ABC130 [3], the digital current increases by 100% near 1 Mrad dose: “Total Ionizing Dose (TID) Bump”
 - Leads to detector cooling problems at runtime
- Mitigation strategy: pre-irradiate ASICs past the TID bump
- Chips irradiated in August (top: 259 and 267) do not see IDDD increase when operated in December (bottom) – pre-irradiation works!

References

Single Event Effects mitigation with TMRG Tool (LHCC Poster Session – Online, November 18, 2021)

N.B.: while Chip 261 is a V1 chip, the above is taken from a clock disabled run, hence the SEUs

\[\sigma_{SEU} = \frac{n_{0\rightarrow1} + n_{1\rightarrow0}}{d\Phi} \]

SEU cross section formula

N.B.: clock disabled runs for V1 chips are used for testing and enhance the SEU cross section – aren’t counted towards cross section calculation

Introduction

- ATLAS Inner Tracker (ITk) Upgrade: all-silicon replacement of ATLAS’s existing inner tracker for the High-Luminosity LHC (HL-LHC) [1] – enhanced granularity and radiation hardness for harsh HL-LHC conditions
- For strip modules (localized detector units), the readout electronics utilize ATLAS Binary Chips (ABCs), which are responsible to digitizing 256 channels and performing cluster finding
- ASICs, like ABCs, are susceptible to radiation effects which could impact performance – important to understand these effects in order to maintain data quality and ensure reliable operation of the ITk

Results: Physics Packet SEU Cross Section

- Level-0 trigger: front-end hit data in the LBuffer is transferred to the EventBuffer, grouped into clusters, and returned as “physics” packets
- This pipeline (red) is susceptible to SEUs like the register memory (blue)
- SEU cross section for errors in physics packets is estimated in same way as for register reads: LBuffer is filled in a predictable way (all 0’s, all 1’s, or a “realistic” pattern) and read out repeatedly – the returned clusters may be compared to the expected clusters
- Cross sections are found to be $(3.69 \pm 0.03) \times 10^{-12}$ cm2/proton and $(5.32 \pm 0.02) \times 10^{-12}$ cm2/proton for V0 and V1 chips, respectively
- Assuming hadron fluxes of 10^7 hadrons/cm2/s and readout durations of 10 μs at the HL-LHC, this yields 10^{-10} errors/trigger/ABCStar
- With 230K ABCStars and a 1 MHz trigger rate, this yields 20 errors/s – insignificant in comparison to the noise occupancy (10^{-4} to 10^{-3} of all channels) and so negligible impact on data quality