

Measuring the radiation hardness of the ATLAS ITkPixVI chip

LHCC Poster Session - 17-18 November 2021

Motivation

Cathode

Cooling chuck (-10 C)

- · Pixel detector upgrade for ITk requires a new readout chip to deal with increased radiation and data rates
- Study the ATLAS/CMS readout chip prototype for the HL-LHC upgrades
- Understand impact of TID damage at the doses expected in the lifetime of HL-LHC (approximately I Grad)
- Deliver radiation in a controlled way using X-ray systems

ITkPixVI

- Latest prototype of ATLAS readout chip
- Designed by the RD53 collaboration in 65 nm technology
- → Used in pre-production and close to final ITk chip

Tungsten target

Beryllium window

Single chip card

Anode

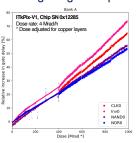
Al filter

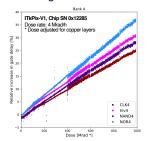
Ring oscillators

- 42 ring oscillators in ITkPixVI, made with different logic cells and different transistor sizes (strength 0 or 4)
- Oscillator drives a 12-bit counter, enabled for a given time
 - Calculate frequency f or delay $T_D=I/(N \cdot f)$

Irradiation setup

X-ray setup at Oxford:

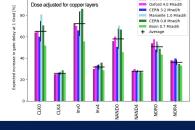

- Comet MXR-160/22 tube
- Tungsten target
- Calibrated using crosscalibrated diode
- → Up to 4 Mrad/h dose rate


Global pulse Output ring oscillator

- During irradiation oscillation frequency decreases
- → Characterise damage to different kinds of logic cells
- → Proxy to understand gate delay
- → Expected issues for > 200% increase
- · Frequency depends on voltage and temperature
- ightarrow Measured during irradiation and accounted for

High dose rate

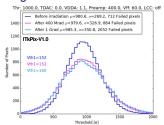
- Irradiation to I Grad at a dose rate of 4Mrad/h
 - Delay degradation:
 - 70% for strength 0 gates
 - 40% for strength 4 gates
- → Strength 4 gates representative of gates used in the chip logic



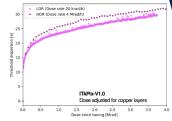
X-ray irradiation results

Gate delays measured at different sites:

- Many high dose rate irradiation campaigns of ITkPixVI performed at different sites
- → Good agreement between results

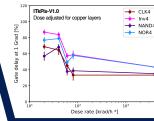


Low dose rate effects


- In ITk the total dose will be delivered over a much longer period of time
- Increased damage to small transistors at lower dose rate and non-linear behaviour at high total doses → but expected gate delay in the chip still within specifications

Analog Front-End (AFE)

- ITkPixVI uses a differential analog front-end
- Study impact of radiation damage on the AFE
- Figure of merit: tuned and untuned threshold distribution
- Increase in threshold dispersion with irradiation, but threshold tuneable for most chip settings after I Grad
- No significant difference in threshold dispersion for low and high dose rates


Untuned threshold distributions before and after irradiation

Threshold dispersion at low and high dose rates

Low dose rate results with

→ Factor 2 larger damage at low dose rate

Low dose rate irradiation of RD53A using Kr-85 source

→ Non-linear behaviour at high total doses

Conclusions

- Tested radiation tolerance of ITkPixVI chips up to total doses of I Grad
- Ring oscillator measurement show delay degradation of up to 40 % for strength 4 gates (corresponding to gates used in chip)
 - Low dose rate increases damage by approximately a factor of 2
 - AFE of ITkPixVI experiences no significant issues up to total doses of I Grad & no dose rate effect on AFE

