LHCC Poster Session, CERN, 18 November 2021

Study of $B_c^+ \rightarrow J/\psi D_s^+$ and $B_c^+ \rightarrow J/\psi D_s^{*+}$ decays in *pp* collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

1. Introduction

The B_c^+ meson is the only known weakly decaying particle consisted of two heavy quarks. It affects theoretical calculations of its decay properties. Various model predictions are available.

Leading Feynman diagrams for $B_c^+ \rightarrow J/\psi D_s^{(*)+}$ decays:

2. Reconstruction and measurement strategy

- Signal modes: $B_c^+ \to J/\psi D_s^+$ and $B_c^+ \to J/\psi D_s^{*+}$
- Daughters are reconstructed via $J/\psi \rightarrow \mu^+\mu^-$ and $D_s^+ \rightarrow \phi \pi^+$ with $\phi \rightarrow K^+K^-$
- 2 distinct decay vertices of B⁺_c and D⁺_s decays
- Masses of J/\u03c6 and D_s^+ candidates are constrained in the vertex fit to their nominal values
- D^{*+}_s decays into D⁺_sγ or D⁺_sπ⁰ with the neutral particle escaping detection, i. e. incomplete reconstruction

Reference mode: $B_c^+ \rightarrow J/\psi \pi^+$

3. Event selection

Preselection

J/ψ candidates

The J/ψ candidates are built from pairs of oppositely charged muon candidates that are reconstructed using information from the MS and the ID. Muon candidates must satisfy the *Loose* identification working point

D_s^+ candidates

- $p_{\mathsf{T}}(\mathrm{trk}) > 1 \,\mathrm{GeV}, \, |\eta(\mathrm{trk})| < 2.5$
- $L_{xy}(D_s^+) > 0 \text{ mm}$ (w.r.t the B_c^+ vertex)
- $m(\phi)$ in ± 7 MeV around nominal ϕ mass
- $1.93 \text{GeV} < m(K^+K^-\pi^+) < 2.01 \text{GeV}$

B_c^+ candidates

- $p_{T}(B_{c}^{+}) > 15 \text{ GeV}, |\eta(B_{c}^{+})| < 2.1$
- $|d_0^{\rm PV}(B_c^+)/\sigma_{d_0^{\rm PV}}(B_c^+)| < 5 \text{ and } |z_0^{\rm PV}(B_c^+)/\sigma_{z_0^{\rm PV}}(B_c^+)| < 5$ w.r.t the PV
- Vertex χ^2 /n.d.f. < 2, n.d.f. = 8

spectator colour-suppressed spectator annihilation Unlike the other *B* mesons, the annihilation diagram is not CKM-suppressed

Measured quantities:

Relative branching ratios

 $\mathcal{R}_{D_s^+/\pi^+} = \mathcal{B}(B_c^+ \to J/\psi D_s^+)/\mathcal{B}(B_c^+ \to J/\psi \pi^+)$ $\mathcal{R}_{D_s^{*+}/\pi^+} = \mathcal{B}(B_c^+ \to J/\psi D_s^{*+})/\mathcal{B}(B_c^+ \to J/\psi \pi^+)$ $\mathcal{R}_{D_s^{*+}/D_s^+} = \mathcal{B}(B_c^+ \to J/\psi D_s^{*+})/\mathcal{B}(B_c^+ \to J/\psi D_s^+)$

• Transverse polarisation in $B_c^+ \rightarrow J/\psi D_s^{*+}$

4. Signal fits

An extended unbinned maximum-likelihood fit to the two-dimensional distribution of $m(J/\psi D_s^+)$ and $\cos \theta'(\mu^+)$ is performed to extract the signal yields as well as the transverse polarization fraction in the $B_c^+ \rightarrow J/\psi D_s^{*+}$ decay. The helicity angle $\theta'(\mu^+)$ is defined as the angle between μ^+ and D_s^+ candidate momenta in the rest frame of the muon pair.

- One secondary vertex of B_c^+ decay; J/ψ candidate mass is constrained in the fit to the nominal value
- The mode provides large statistics and thus used for normalisation in the branching fractions measurement

Polarisation in $B_c^+ \rightarrow J/\psi D_s^{*+}$ decay

- Scalar B_c^+ decays into two vector particles \rightarrow three possible helicity amplitudes A_{00} , A_{++} , A_{--}
- Longitudinal A₀₀ and transverse A_{±±} components have different kinematics:
 - shape of $J/\psi D_{s}^{+}$ invariant mass and J/ψ helicity angle
- They can be distinguished in the fit to these variables

• $L_{xy}(B_c^+) > 0.3 \text{ mm}, L_{xy}(B_c^+) < 10 \text{ mm}$

To further suppress the combinatorial background, a multivariate classifier based on boosted decision trees (BDT) as implemented in the TMVA framework is employed. **BDT input variables**

- $p_{\mathsf{T}}(D_s^+)$, $L_{\mathsf{xy}}(D_s^+)$
- $\cos \theta^*(\pi^+)$, $|\cos^3 \theta'(K^+)|$ (for D_s^+)
- $\cos \theta^*(D_s^+)$, $\cos \theta'(\pi^+)$ (for B_c^+)

2	C	
Э.	Sys	tematics
	J	

Source	Uncertainty [%]			
	$ R_{D_s^+/\pi^+}$	$R_{D_s^{*+}/\pi^+}$	$R_{D_s^{*+}/D_s^+}$	$\Gamma_{\pm\pm}/\Gamma$
Simulated $p_{\rm T}(B_c^+)$ spectrum	1.5	1.9	0.4	0.1
Simulated $ \eta(B_c^+) $ spectrum	0.7	0.7	0.1	0.2
B_c^+ lifetime	0.1	< 0.1	_	—
D_s^+ lifetime	0.4	0.4	_	_
Tracking efficiency	1.0	1.0	< 0.1	< 0.1
Pile-up effects	1.0	1.0	—	_
χ^2/ndf cut efficiency	3.2	3.2	_	_
Impact parameter cuts efficiency	0.2	0.2	—	_
BDT cut efficiency	1.3	1.3	—	—
Trigger efficiency	1.0	1.0	—	_
$B_c^+ \to J/\psi D_s^{(*)+}$ signal fit:				
D_s^+ signal mass modelling	1.8	0.5	1.3	0.8
D_s^{*+} signal mass modelling	0.6	1.2	1.7	2.7
signal angular modelling	0.4	< 0.1	0.4	0.6
background mass modelling	6.0	9.0	3.2	1.0
background angular modelling	0.9	1.3	2.1	2.4
$B_s^0 \to \mu^+ \mu^- \phi$ triggers	0.8	0.5	1.3	4.0
$B_c^+ \to J/\psi \pi^+$ signal fit				
signal modelling	4.2	4.2	_	_
PRD/comb. background modelling	5.8	5.8	_	_
CKM-suppr. background modelling	1.0	1.0	_	_
MC statistics	1.5	1.5	1.7	1.5
Total	10.7	12.6	5.0	5.8
$\mathcal{B}(D_s^+ \to \phi(K^+K^-)\pi^+)$	5.9	5.9	_	_

 $m(J/\psi D^{+})$ [MeV]

- contributions extracted from simulation with kernel estimate; fraction
- $f_{\pm\pm}$ is free parameter
- Background: exponential function
- *Dataset 1*: candidates in the events collected by the standard dimuon or three-muon triggers can be safely used to measure $R_{D_s^+/\pi^+}$, $R_{D_s^{*+}/\pi^+}$.
- Dataset 2: candidates collected only by the dedicated bBmumux_Bsmumuphi triggers — improve sensitivity to $R_{D_s^{*+}/D_s^{+}}$, $\Gamma_{\pm\pm}/\Gamma$.

5. Normalisation using reference decay

Selection of the reference decay candidates is close to that of signal for better cancellation of uncertainties

- Same cuts as in $B_c^+ \to J/\psi D_s^{(*)+}$:
- J/ψ candidate selection
- $p_{\mathsf{T}}(B_c^+)$, $|\eta(B_c^+)|$ region, $L_{\mathsf{xy}}(B_c^+)$

Further cuts

- $|d_0^{\rm PV}(B_c^+)/\sigma_{d_0^{\rm PV}}(B_c^+)| < 3 \text{ and } |z_0^{\rm PV}(B_c^+)/\sigma_{z_0^{\rm PV}}(B_c^+)| < 3$
- $\chi^2/n.d.f.(B_c^+) < 1.8$, $p_T(\pi^+) > 3.5 \,\text{GeV}$

• Veto π^+ candidate tracks identified as *low-p*_T muons to suppress $B_c^+ \to J/\psi \mu^+ \nu_\mu X$ **Ratios of branching fractions:**

7. Results

 $|\cos\theta'(\mu^{+})|$

Measured ratios of branching fractions:

$$\begin{split} \mathcal{R}_{D_s^+/\pi^+} &= 2.76 \pm 0.33 (\text{stat.}) \pm 0.29 (\text{syst.}) \pm 0.16 (\text{BF}) \\ \mathcal{R}_{D_s^{*+}/\pi^+} &= 5.33 \pm 0.61 (\text{stat.}) \pm 0.67 (\text{syst.}) \pm 0.32 (\text{BF}) \\ \mathcal{R}_{D_s^{*+}/D_s^+} &= 1.93 \pm 0.24 (\text{stat.}) \pm 0.1 (\text{syst.}) \end{split}$$

(BF error corresponds to the knowledge of $\mathcal{B}_{D_s^+ \to \phi(K^+K^-)\pi^+}$) **Transverse polarisation fraction in** $B_c^+ \to J/\psi D_s^{*+}$: $\Gamma_{\pm\pm}/\Gamma = 0.70 \pm 0.10(\text{stat.}) \pm 0.04(\text{syst.})$

The measurements of $R_{D_s^+/\pi^+}$ and $R_{D_s^{*+}/D_s^+}$ agree with ATLAS Run 1 [2] and LHCb [3] results. The obtained value of the $R_{D_s^{*+}/\pi^+}$ is smaller and $\Gamma_{\pm\pm}/\Gamma$ is larger than the ATLAS Run 1 measurement, although in both cases the difference does not exceed 1.5 standard deviations taking the Run 1 uncertainty. All the ratios of branching fractions are well described by the QCD relativistic potential model predictions [4].

 $\Gamma_{\pm\pm}/\Gamma = f_{\pm\pm} \times \frac{B_c - J_{J/\psi}}{\epsilon_{B_c}^{\text{DS1\&2}}}$

B_{Ds⁺→φ(K⁺K⁻)π⁺} - kaon pair mass dependent value from CLEO measurement [1]
 The total efficiencies - from MC simulation

Mode	$\epsilon^{\mathrm{DS1}}_{B^+_c \to J/\psi X} \ [\%]$	$\epsilon^{\mathrm{DS1\&2}}_{B^+_c \to J/\psi X} \ [\%]$
$B_c^+ \to J/\psi D_s^+$	0.971 ± 0.012	1.163 ± 0.013
$B_c^+ \to J/\psi D_s^{*+}, A_{00}$	0.916 ± 0.012	1.088 ± 0.012
$B_c^+ \to J/\psi D_s^{*+}, A_{\pm\pm}$	0.868 ± 0.010	1.049 ± 0.011
$B_c^+ \to J/\psi \pi^+$	2.169 ± 0.018	

■ They are different for A₀₀ and A_{±±} components of B⁺_c → J/ψD^{*+}_s due to slightly different kinematics

$$\epsilon_{B_c^+ \to J/\psi D_s^{*+}} == \left(f_{\pm\pm}/\epsilon_{B_c^+ \to J/\psi D_s^{*+}, A_{\pm\pm}} + (1 - f_{\pm\pm})/\epsilon_{B_c^+ \to J/\psi D_s^{*+}, A_{00}} \right)^{-1}$$

Unbinned extended ML fit to $m(J/\psi\pi^+)$ distribution

- *Signal:* modified Gaussian
- $B_c^+ \rightarrow J/\psi K^+$: MC template (relative rate to the signal fixed to PDG*efficiency ratio)
- PRD component:
- MC suggests it'd dominated by $B_c^+
 ightarrow J/\psi
 ho^+$
- It has $A_{\pm\pm}$ and A_{00} components with different mass shapes
- Fit with a sum of two MC templates, leaving the f_{00} floating
- Combinatorics: 2-parameter exponential,

 $\exp(-a_0m\cdot(1+a_1m))$

References

- [1] CLEO Collaboration, Absolute Measurement of Hadronic Branching Fractions of the D⁺_(s) Meson, Phys. Rev. Let100 (2008) 161804 , arXiv:0801.0680 [hep-ex]
- [2] ATLAS Collaboration, Study of the $B_c^+ \rightarrow J/\psi D_s^+$ and $B_c^+ \rightarrow J/\psi D_s^{*+}$ decays with the ATLAS detector, Eur. Phys. J. C **76** (2016) no.1, 4 \checkmark , arXiv:1507.07099 [hep-ex] \checkmark .
- [3] LHCb Collaboration, Observation of $B_c^+ \rightarrow J/\psi D_s^+$ and $B_c^+ \rightarrow J/\psi D_s^{*+}$ decays, Phys. Rev. **D 87** (2013) 112012 , arXiv:1304.4530 [hep-ex] .
- [4] P. Colangelo and F. De Fazio, Using heavy quark spin symmetry in semileptonic B_c decays, Phys. Rev. D 61 (2000), 034012³, arXiv:hep-ph/9909423 [hep-ph]³.

Tatiana Lyubushkina for the ATLAS collaboration Tatiana.Lyubushkina@cern.ch

