Measurement of dependence of jet suppression on substructure in Pb+Pb with ATLAS

Wenkai Zou for the ATLAS Collaboration

Introduction

• Measurements of the suppression of the jet yield in Pb+Pb compared to pp provide insight into the energy-loss process and the properties of the quark-gluon plasma (QGP).
• In some models [1] which describe the jet energy loss in the QGP, the medium can only resolve partonic fragments at certain transverse resolution scale, below which they act coherently as a single emitter.
• To study this, nuclear modification factor, R_{AA} is measured with large-radius jets and dependence on splitting scale $\sqrt{d_{12}}$.
• This measurement [2] is carried out with 2018 Pb+Pb (1.72 nb^{-1}) and 2017 pp (257 pb^{-1}) data, both recorded at 5.02 TeV.

Jet reconstruction and analysis procedure

• $R = 1.0$ large-radius jets: select anti-k_T, $R = 0.2$ jets [3] with $p_T > 35 \text{ GeV}$, and cluster them with anti-k_T, $R = 1.0$ algorithm within $|y| < 2.0$.
• Splitting scale $\sqrt{d_{12}}$ characterizes the jet substructure. Run k_T alg. to re-cluster the $R = 0.2$ sub-jets in the $R = 1.0$ jet, and at the last clustering step (2->1), which corresponds to the hardest splitting in the jet, define:

$$d_{12} \equiv \min(p_{T1}, p_{T2}) \cdot \Delta R_{12}, \Delta R_{12} = \sqrt{\Delta \phi^2_{12} + \Delta y^2_{12}}$$

• This reconstruction method suppresses the underlying event and gives good jet energy scale (JES) and jet energy resolution (JER).
• Most $R = 1.0$ jets have only one $R = 0.2$ sub-jet.
• The centrality dependence of the sub-jet multiplicity can be attributed to the resolution and combinatorial contributions from jets produced in other independent hard scatterings.
• 2D (1D) Bayesian unfolding is applied in jet p_T and $\sqrt{d_{12}}$ (in jet p_T only).
• The unfolding removes the effects of the jet energy resolution, residual jet energy scale non-closure, and the combinatorial contribution.

Systematic uncertainties

• The following systematic uncertainties are considered for this analysis:
 1. Uncertainty of the jet energy scale
 2. Uncertainty of the jet energy resolution
 3. Sensitivity of the unfolding to the prior
 4. Uncertainty from the limited number of MC events
 5. Uncertainty of the mean nuclear thickness function (T_{AA}) values
 6. Uncertainty of the pp luminosity
• Many cancel out between Pb+Pb and pp when calculating R_{AA} ratio.
• Dominated by the jet energy scale term.

Result: inclusive R_{AA}

• R_{AA} drops significantly from single sub-jet (SSJ) to non-zero $\sqrt{d_{12}}$ (more complex substructure).
• R_{AA} decreases as $\langle N_{\text{part}} \rangle$ increases (more central collisions).

Result: R_{AA} with $\sqrt{d_{12}}$ dependence

• R_{AA} increases as jet p_T increases for $R = 1.0$ jets with a single sub-jet.

References and acknowledgements

• This work was supported by the United States Department of Energy Grant DOE-FG02-86ER-40281