

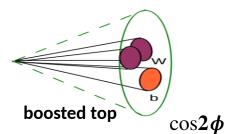
Azimuthal Angular Correlation as a Boosted Top Jet Substructure

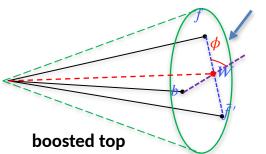
Zhite Yu
Michigan State University

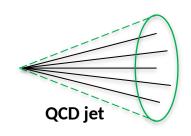
PIKIMO 11 12/4/2021

Boosted top quark

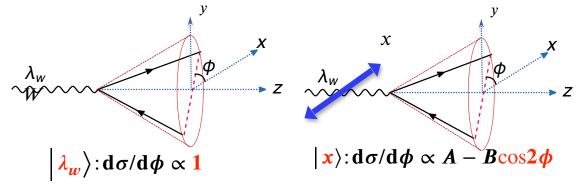
- Why boosted top quark? [1012.5412]
 - Important portal to new physics $pp o X_{\rm heavy} o t o bW(o f \bar f')$
 - Easier to separate signal from the background

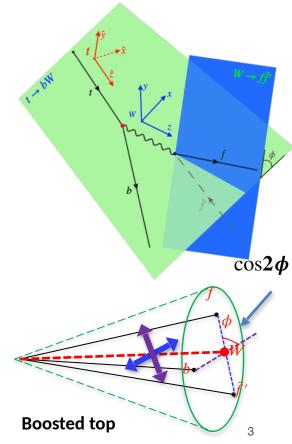

• W and t masses CMS-PAS-


• 3-subjet structure JME-13-007, 1006.2833, 1808.07858


Azimuthal angular correlation

- Production mechanism [arXiv:1103.3274]
- Polarization of top ← azimuthal angular correlation





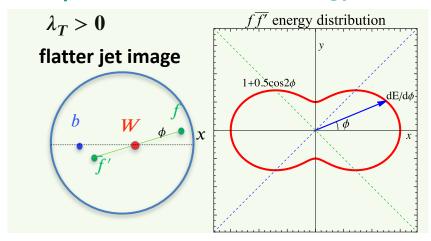
Azimuthal angular correlation in $t o bW(o f\bar{f})$ decay

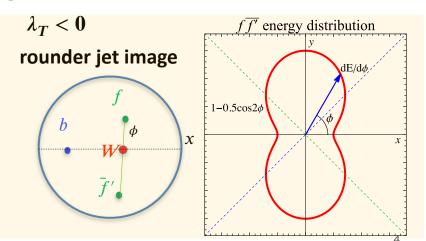
- Azimuthal correlation angle
 - $\sigma^{-1} d\sigma/d\phi$ is the <u>angular correlation</u>.
- $lue{}$ Depends on $oldsymbol{W}$ polarization

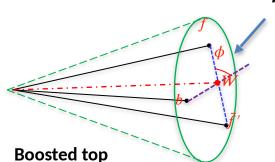
- W decay plane tends to be $\perp W$ linear polarization.
- Direction: $\parallel / \perp \ tbW$ plane

Azimuthal angular correlation: result

 $\cos 2\phi$

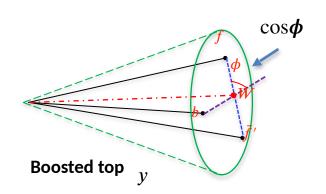

□ Azimuthal correlation

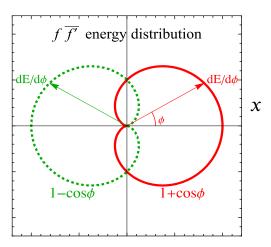

$$\frac{1}{\sigma} \frac{d\sigma}{d\phi} = \frac{1}{2\pi} \left[1 + \lambda_T \cos 2\phi - \frac{3\pi}{8} J_1 \cos \phi \right]$$


$$\phi \in [0,\!2\pi]$$

 $\cos 2\phi$ only exists in the boosted top frame

□ Azimuthal correlation

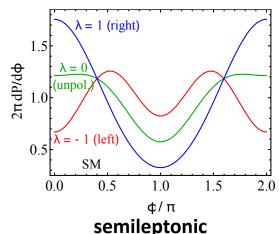

$$\frac{1}{\sigma} \frac{d\sigma}{d\phi} = \frac{1}{2\pi} \left[1 + \lambda_T \cos 2\phi - \frac{3\pi}{8} J_1 \cos \phi \right]$$

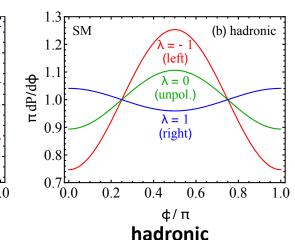

$$\phi \in [0,2\pi]$$

 $\Box \cos \phi$: "forward-backward" asymmetry along x

- Requires distinguishing f from \bar{f}' : semileptonic t decay.
- For hadronic t decay, we cannot tell ϕ from $\phi + \pi$

$$\frac{1}{\sigma^{(h)}} \frac{d\sigma^{(h)}}{d\phi} = \frac{1}{\pi} \left[1 + \lambda_T \cos 2\phi \right], \quad \phi \in [0, \pi]$$

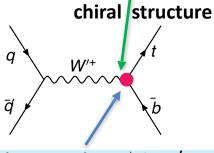



Dependence on top polarization

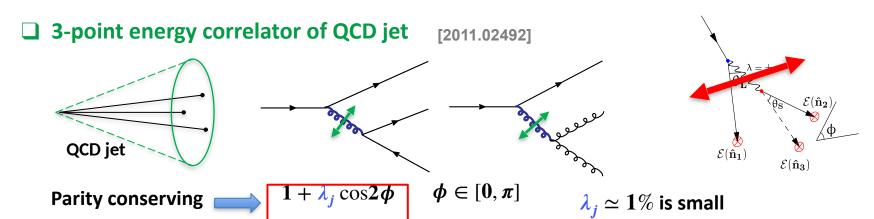
$$\frac{1}{\sigma^{(l)}} \frac{\mathrm{d}\sigma^{(l)}}{\mathrm{d}\phi} = \frac{1}{2\pi} \left[1 + \lambda_T \cos 2\phi - \frac{3\pi}{8} J_1 \cos \phi \right], \quad \phi \in [0, 2\pi]$$

$$\frac{1}{\sigma^{(h)}} \frac{d\sigma^{(h)}}{d\phi} = \frac{1}{\pi} \left[1 + \lambda_T \cos 2\phi \right], \quad \phi \in [0, \pi]$$

$$\lambda_T = -0.106 + 0.147 \lambda, \quad J_1 = -0.271 - 0.336 \lambda$$



(with SM Wtb coupling)


Angular correlation helps measure

top polarization λ

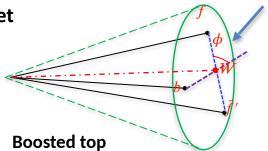
$$\bar{t}\gamma^{\mu}\left(f_{L}P_{L}+f_{R}P_{R}\right)bW'_{\mu}+\text{h.c.}$$

Azimuthal correlation as a boosted top tagger

☐ Comparison to QCD jet

Top jet (hadronic mode): $1 + \lambda_T \cos 2\phi$

Polarization		$\lambda_T \gg \lambda_i$
Тор		•


 $\cos 2\phi$ correlation can be a boosted top quark tagger

 $\cos 2\phi$

Summary

- Proposed a new observable
 - $\cos 2\phi$ angular correlation \Longrightarrow "roundness" of the top jet
 - Due to Wlinear polarization
 - Only exists in boosted top frame
- Phenomenological significance
 - Measuring longitudinal polarization of boosted top
 - Distinguish from QCD jet
 - Suppress top background

