

Multi-Boson Production and the Muon Yukawa Coupling

Yang Ma

PITT PACC, University of Pittsburgh

PIKIMO 11 December 4, 2021

arXiv:2108.05362, in collaboration with T. Han, K. Xie (PITT), W. Kilian, N. Kreher, T. Striegl (U. Seigen), and J. Reuter (DESY)

The Dream Machine

A high-energy muon collider

A possible high-energy lepton collider: Why?

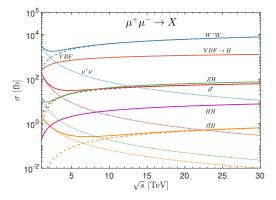
Why lepton colliders?

- Leptons are the ideal probes of short-distance physics
 - Cleaner background comparing to hadron colliders
 - High-energy physics probed with much smaller collider energy
- ee colliders
 - A glorious past: discovery of charm, τ , and gluon
 - Important future: Precision EW constraints on BSM physicss, Higgs physics

Muon colliders

- A s-channel Higgs factory: Higgs production enhanced by $m_{\mu}^2/m_e^2 \sim 40000$
 - Direct measurements on y_{μ} and Γ_H
- Multi-TeV muon colliders: Less radiations then electron
 - Center of mass energy 3-15 TeV and the more speculative $E_{\rm cm} = 30$ TeV
 - \blacksquare New particle mass coverage $M \sim (0.5-1) E_{\rm cm}$
 - Great accuracies for WWH, WWHH, H³, H⁴
 - **.**..

Muon Collider Physics Potential Pillars


Direct search of heavy particles

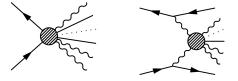
SUSY-inspired, WIMP, VBF production, 2->1 High rate indirect probes Higgs single and selfcouplings, rare Higgs decays, exotic decays High energy probes

Higgs compositeness

A possible high-energy muon collider: The full picture

Just like in hadronic collisions: $\mu^+\mu^- \rightarrow \text{exclusive particles} + \text{remnants}$

[T. Han, Y. Ma, K.Xie 2007.14300]

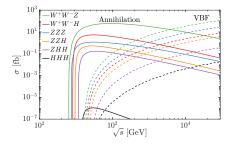

Some observations:

- The annihilations decrease as 1/s.
- ISR needs to be considered, which can give over 10% enhancement.
- The fusions increase as $\ln^p(s)$, which take over at high energies.
- The large collinear logarithm $\ln(s/m_{\mu}^2)$ needs to be resummed, set $Q = \sqrt{\hat{s}}/2$.

Multi-boson physics

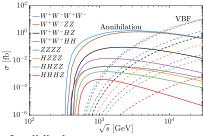
New phenomenology at a multi-TeV lepton collider:

- **1** Multi-boson production (annihilation)
- 2 ... and vector boson fusion to multi-bosons, leading to multi-fermion final states with resonance structure.


[Barger, Cheung, Han, Phillips 1995]

[Boos, He, Kilian, Pukhov, Yuan, Zerwas 1998]

Task:


Measure all interactions of multiple SM particles exclusively and with precision, from threshold to up to 2 orders of magnitude above EW scale.

Annihilation vs VBF: Properties (SM)

VBF:

- Increases rapidly
- Most of cross section at threshold
- Highly boosted final state (forward/backward)

Annihilation:

- Decreases slowly
- Most of cross section at highest energy
- One Boson highly off-shell
- Final state in rest frame (central)

Annihilation processes important for analysis at all energies.

Muon-Higgs Coupling

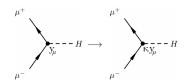
- Physics: We actually do not know whether the SM mass-generation mechanism applies just to the heavy particles, or also to the 1st/2nd generations.
- Logical possibility: Muon mass not (only) generated by SM Higgs. ⇒ Why not hava an arbitrary Yukawa coupling?

Muon Yukawa coupling

In SM:

• One of the fundamental parameters of the SM: $y_{\mu} = \sqrt{2}m_{\mu}/v$

 Recently confirmed to have the predicted order of magnitude, but results are not yet at the 5σ level


• HL-LHC predicts a measurement of y_{μ} within an accuracy of $\mathscr{O}(10\%)$

[ATL-PHYS-PUB-2014-016]

• High beam qulity is required for directly measuring $\mu^+\mu^- \to H$.

If BSM exists:

• Correction from BSM: $y_{\mu} = \kappa y_{\mu}^{SM}$

• The delicate gauge cancellation in SM will be spoiled if $\kappa \neq 1$, resulting in huge cross sections.

[arXiv:hep-ph/0106281]

 An experimental bound on Δκ_μ translates to a bound on the scale of new physics

$$\Lambda > 10 \text{ TeV} \sqrt{\frac{g}{\Delta \kappa_{\mu}}}$$

[[]arXiv:2007.07830,2009.04363]

EFT parameterizations

■ Nonlinear HEFT [Coleman et al., PR1969, Weinberg, PLB1980, …]

$$\begin{aligned} \mathscr{L}_{UH} = & \frac{v^2}{4} \operatorname{Tr} \left[D_{\mu} U^{\dagger} D^{\mu} U \right] F_U(H) + \frac{1}{2} \partial_{\mu} H \partial^{\mu} H - V(H) \\ & - \frac{v}{2\sqrt{2}} \left[\bar{\ell}_L^i \tilde{Y}_{\ell}^{ij}(H) U \left(1 - \tau_3 \right) \ell_R^j + \text{ h.c.} \right] \end{aligned}$$

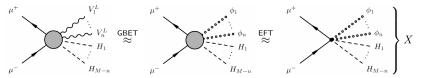
with F_U, V, \tilde{Y} expanded as

$$\begin{split} F_U(H) &= 1 + \sum_{n \ge 1} f_{U,n} \left(\frac{H}{v}\right)^n, V(H) = v^4 \sum_{n \ge 2} f_{V,n} \left(\frac{H}{v}\right)^n, \\ \tilde{Y}_{\ell}^{ij}(H) &= \sum_{n \ge 0} \tilde{Y}_{\ell,n}^{ij} \left(\frac{H}{v}\right)^n \end{split}$$

which gives muon-Higgs effective coupling $\kappa_{\mu} = \frac{v}{\sqrt{2}m_{\mu}}y_1$.

■ Linear SMEFT [Weinberg PRL1979, Abbott & Wise PRD1980, …]

$$\mathscr{L} = \mathscr{L}_{\rm EW} + \left[\sum_{n=1}^{N} \frac{\tilde{C}_{\ell \varphi}^{(n)ij}}{\Lambda^{2n}} \left(\varphi^{\dagger} \varphi \right)^{n} \bar{\ell}_{L}^{i} \varphi e_{R}^{j} + \text{ h.c.} \right]$$

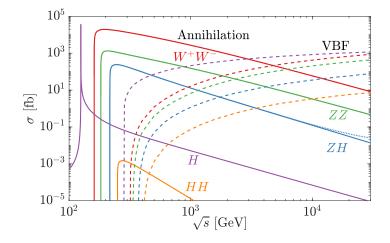

giving

$$M_{\ell}^{(6)} = \frac{v}{\sqrt{2}} \left(Y_{\ell} - \frac{v^2}{2} C_{\ell \varphi} \right), \text{ and } \kappa_{\mu}^{(6)} = 1 - \frac{v^3}{\sqrt{2}m_{\mu}} c_{\ell \varphi}^{(1)}$$

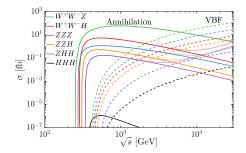
9/17

$\mathsf{EFT} + \mathsf{GBET}$

- For a multi boson final state X the **longitudinal polarizations** will dominate the high energy asymptotics.
- Longitudinal mode can be approximated using Goldstone bosons. (GBET).
- EFT introduces contact terms that dominate the high energy asymptotics.

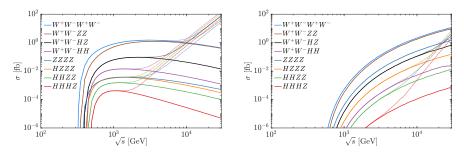

The corresponding phase space is

$$\Phi_M^{X_i}(k_1+k_2;p_1,\ldots,p_M) = \frac{1}{(2\pi)^{4M}} \left(\frac{\pi}{2}\right)^{M-1} \frac{s^{M-2}}{\Gamma(M)\Gamma(M-1)} \quad ,$$

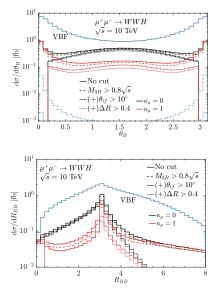

The ratio between different cross section is

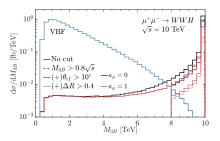
$$R^{X_i} := \frac{\sigma^{X_i}}{\sigma^{X_{\mathsf{ref}}}} = \frac{|C_{X_i}|^2 \left(\prod_{j \in J_{X_i}} \frac{1}{n_j!}\right)}{|C_{X_{\mathsf{ref}}}|^2 \left(\prod_{j \in J_{X_{\mathsf{ref}}}} \frac{1}{n_j!}\right)}$$

Two-boson final states



Three-boson final states


	$\Delta \sigma^X / \Delta \sigma^{W^+W^-H}$					
	SMEFT				HEFT	
$\mu^+\mu^- \to X$	\dim_6	dim ₈	$\dim_{6,8}$	$\dim_{6,8}^{\text{matched}}$	\dim_{∞}	$\dim_{\infty}^{\text{matched}}$
WWZ	1	1/9	$R_{(3),1}^{\text{SMEFT}}$	1/4	$R_{(3),1}^{\rm HEFT}/9$	1/4
ZZZ	3/2	1/6	$3 R_{(3),1}^{\text{SMEFT}}/2$	3/8	$R_{(3),1}^{\rm HEFT}/6$	3/8
WWH	1	1	1	1	1	1
ZZH	1/2	1/2	1/2	1/2	1/2	1/2
ZHH	1/2	1/2	1/2	1/2	$2R_{(3),2}^{\text{HEFT}}$	1/2
HHH	3/2	25/6	$3 R_{(3),2}^{\rm SMEFT}/2$	75/8	$6 R_{(3),3}^{HEFT}$	0


Four-boson final states

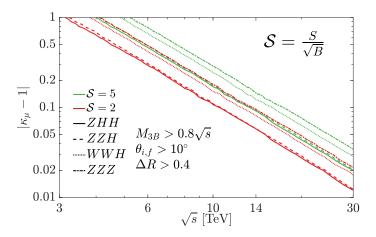
	$\Delta \sigma^X / \Delta \sigma^{WWHH}$					
	SMEFT				HEFT	
$\mu^+\mu^- \to X$	$\dim_{6,8}$	dim ₁₀	$\dim_{6,8,10}$	$\dim_{6,8,10}^{\text{matched}}$	\dim_{∞}	$\dim_{\infty}^{\text{matched}}$
WWWW	2/9	2/25	$2 R_{(4),1}^{\text{SMEFT}}/9$	1/2	$R_{(4),1}^{\rm HEFT}/18$	1/2
WWZZ	1/9	1/25	$R_{(4),1}^{\text{SMEFT}}/9$	1/4	$R_{(4),1}^{\rm HEFT}/36$	1/4
ZZZZ	1/12	3/100	$R_{(4),1}^{\text{SMEFT}}/12$	3/16	$R_{(4),1}^{\rm HEFT}/48$	3/16
WWZH	2/9	2/25	$2 R_{(4),1}^{\text{SMEFT}}/9$	1/2	$R_{(4),2}^{\rm HEFT}/8$	1/2
WWHH	1	1	1	1	1	1
ZZZH	1/3	3/25	$R_{(4),1}^{\text{SMEFT}}/3$	3/4	$R_{(4),2}^{\rm HEFT}/12$	3/4
ZZHH	1/2	1/2	1/2	1/2	1/2	1/2
ZHHH	1/3	1/3	1/3	1/3	$3R_{(4),3}^{\text{HEFT}}$	1/3
HHHH	25/12	49/12	$25 R_{(4),2}^{\text{SMEFT}}/12$	1225/48	$12 R_{(4),4}^{\text{HEFT}}$	0

WWH at a 10 TeV muon collider: Kinematics

- Background (VBF) is much larger than signal (annihilation)
- VBF events accumulate around threshold, and mostly forward
- Annihilation in the rest frame (central, and $M \sim \sqrt{s}$ spread by ISR)
- Annihilation also has forward dominance, due to the gauge splitting $W \rightarrow WH$

WWH at a 10 TeV muon collider: Cuts

Cut flow	$\kappa_{\mu} = 1$	w/o ISR	$\kappa_{\mu} = 0 \ (2)$	CVBF	NVBF		
σ [fb]	WWH						
No cut	0.24	0.21	0.47	2.3	7.2		
$M_{3B} > 0.8\sqrt{s}$	0.20	0.21	0.42	$5.5\cdot10^{-3}$	$3.7 \cdot 10^{-2}$		
$10^{\circ} < \theta_B < 170^{\circ}$	0.092	0.096	0.30	$2.5\cdot 10^{-4}$	$2.7 \cdot 10^{-4}$		
$\Delta R_{BB} > 0.4$	0.074	0.077	0.28	$2.1\cdot 10^{-4}$	$2.4 \cdot 10^{-4}$		
# of events	740	770	2800	2.1	2.4		
S/B	2.8						


Integrated luminosity $\mathscr{L} = (\sqrt{s}/10 \text{ TeV})^2 \cdot 10 \text{ ab}^{-1}$ [1901.06150]

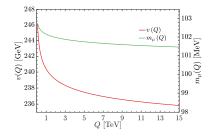
$$\bullet S = N_{\kappa_{\mu}} - N_{\kappa_{\mu}=1}, \ B = N_{\kappa_{\mu}=1} + N_{\text{VBF}}$$

- VBF and ISR are mostly excluded by invariant mass cut.
- Angular cut also weaken VBF further.

Test the muon Yukawa: statistical sensitivity

- The most sensitive channels are ZHH and ZZH, similar probes due to GBET.
- Taking S = 2 criterion, we can test the muon-Higgs coupling up to 10% (1%) precision at a 10 (30) TeV muon collider, corresponding to new physics scale $\Lambda_{\rm NP} \sim 30 100$ TeV.

Conclusion

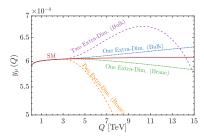

- A high-energy muon collider is a dream machine for new physics search, both for energy and precision frontiers.
- Multi-boson production at a multi-TeV muon collider accounts for a rich phenomenology: frequent resonant 8, 10, ... jet events
 - ⇒ Complete account of EW interactions
- Annihilation may dominate sensitivity over VBF.
- The sensitivity reach to anomalous muon-Higgs couplings rises with the number of gauge bosons.
 - Isolation of signal from background (VBF) can be achieved by investigation of kinematical distributions.
 - A multi-TeV muon collider can provide us a great chance to test the muon-Higgs coupling, up to percision of 10% (1%) at a 10 (30) TeV machine, probing new physics scale at 30 (100) TeV.
- Many improvements can be performed: different channels, multiplicities, multivariate analysis, polarization information.

Muon Yukawa coupling: running

In SM

$$m_{\mu}(Q) = y_{\mu}(Q)v(Q)/\sqrt{2}$$

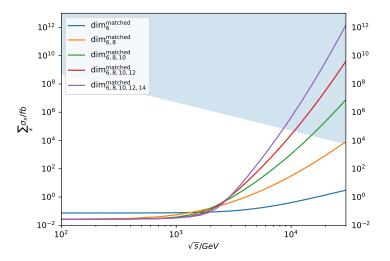
$$\begin{split} \beta y_t &= \quad \frac{\mathrm{d} y_t}{\mathrm{d} t} = \frac{y_t}{16\pi^2} \left(\frac{9}{2} y_t^2 - 8g_3^2 - \frac{9}{4} g_2^2 - \frac{17}{20} g_1^2 \right) \\ \beta y_\mu &= \quad \frac{\mathrm{d} y_\mu}{\mathrm{d} t} = \frac{y_\mu}{16\pi^2} \left(3y_t^2 - \frac{9}{4} (g_2^2 + g_1^2) \right), \\ \beta v &= \quad \frac{\mathrm{d} v}{\mathrm{d} t} = \frac{v}{16\pi^2} \left(\frac{9}{4} g_2^2 + \frac{9}{20} g_1^2 - 3y_t^2 \right), \\ \beta g_i &= \quad \frac{\mathrm{d} g_i}{\mathrm{d} t} = \frac{b_i g_i^3}{16\pi^2}, \end{split}$$



In potential new physics (NP)

$$\beta_{\lambda} = \beta_{\lambda}^{\text{SM}} + \sum_{s \in \text{NP}} \Theta(Q - M_s) \times N_s \beta_{s,\lambda}^{\text{NP}}$$

One example: the Bulk and Brane extra-dimensional scenarios


[Cornell et al. 1110.1942, 1209.6239, 1306.4852]

[We choose 1/R = 3 TeV for illustration, Han et al. 2108.05362]

Unitarity bounds on a nonstandard Yukawa sector

Inclusive inelastic cross section $\mu^+\mu^- \rightarrow X$ for multiple Goldstone and Higgs-boson production in the GBET approximation

