Two-loop Electroweak Corrections to the Top-Quark Contribution to ϵ_{K}

Sandra Kvedaraitė
in collaboration with J. Brod and Z. Polonsky, based on 2108.00017

University of Cincinnati

PIKIMO 11, 12/04/2021

Introduction

- Indirect CP violation is defined as

$$
\epsilon_{K} \equiv \frac{\left\langle(\pi \pi)_{I=0}\right| T\left|K_{L}\right\rangle}{\left\langle(\pi \pi)_{I=0}\right| T\left|K_{S}\right\rangle}
$$

- It arises from the kaon mixing via the diagrams

as the mass eigenstates are admixtures of CP eigenstates
- It is used to constrain the CKM matrix and unitarity triangle
- Experimentally: $\left|\epsilon_{K}\right|_{\text {exp }}=(2.228 \pm 0.011) \times 10^{-3}$ (PDG 2020)

Introduction

- Can be written as

$$
\epsilon_{K} \equiv e^{i \phi_{\epsilon}} \sin \phi_{\epsilon} \frac{1}{2} \arg \left(\frac{-M_{12}}{\Gamma_{12}}\right)
$$

where $\phi_{\epsilon}=\arctan \left(2 \Delta M_{K} / \Delta \Gamma_{K}\right)$ and $M_{12}=-\left\langle K^{0}\right| \mathscr{L}_{f=3}^{\Delta S=2}\left|\bar{K}^{0}\right\rangle /\left(2 \Delta M_{K}\right)$

Introduction

- Can be written as

$$
\epsilon_{K} \equiv e^{i \phi_{\epsilon}} \sin \phi_{\epsilon} \frac{1}{2} \arg \left(\frac{-M_{12}}{\Gamma_{12}}\right)
$$

where $\phi_{\epsilon}=\arctan \left(2 \Delta M_{K} / \Delta \Gamma_{K}\right)$ and $M_{12}=-\left\langle K^{0}\right| \mathscr{L}_{f=3}^{\Delta S=2}\left|\bar{K}^{0}\right\rangle /\left(2 \Delta M_{K}\right)$

- At scales around $\mu=2 \mathrm{GeV}$, effective $|\Delta S|=2$ Lagrangian is given by

$$
\mathscr{L}_{f=3}^{|\Delta S|=2}=-\frac{G_{F}^{2} M_{W}^{2}}{4 \pi^{2}}\left[\lambda_{u}^{2} C_{S 2}^{\prime \prime u}(\mu)+\lambda_{t}^{2} C_{S 2}^{\prime \prime t t}(\mu)+\lambda_{u} \lambda_{t} C_{S 2}^{\prime \prime u t}(\mu)\right] Q_{S 2}^{\prime \prime}+\text { h.c. }+\ldots
$$

where $Q_{S 2}^{\prime \prime}=\left(\bar{s}_{L}^{\alpha} \gamma_{\mu} d_{L}^{\alpha}\right) \otimes\left(\bar{s}_{L}^{\beta} \gamma^{\mu} d_{L}^{\beta}\right)$ and $\lambda_{i} \equiv V_{i s}^{*} V_{i d}$

EFTs and Matching

Effective field theory and matching

- EFT Lagrangian: $\mathscr{L}=\sum_{i} C_{i}^{(0)} \mathcal{O}_{i}^{(0)}$
- Define renormalized Wilson Coefficients: $C_{i}^{(0)}=Z_{i j} C_{j}$
- RGEs determine the scale-dependence of renormalized Wilson Coefficients in terms of ADM and evolution matrix

$$
\frac{d C_{i}}{d \log (\mu)}=C_{j}(\mu) \gamma_{j i} \rightarrow C_{i}(\mu)=C_{j}\left(\mu_{0}\right) U_{j i}\left(\mu_{0}, \mu\right)
$$

- The initial conditions for $C_{i}(\mu)$ are found by requiring

$$
\mathscr{A}_{\text {full }}\left(\mu_{\text {match }}\right)=\mathscr{A}_{E F T}\left(\mu_{\text {match }}\right)
$$

- At LO this is just $\mathscr{A}_{i}^{(0)}=C_{i}^{(0)}$

Evanescent operators

- Use dimensional regularization $d=4-2 \epsilon$
- γ_{5} is not well defined
- Introduce evanescent operators which vanish as $d \rightarrow 4$

$$
\begin{aligned}
& E_{S 2}^{(1)}=\left(\bar{s}_{L}^{\alpha} \gamma_{\mu_{1}} \gamma_{\mu_{2}} \gamma_{\mu_{3}} d_{L}^{\alpha}\right) \otimes\left(\bar{s}_{L}^{\beta} \gamma^{\mu_{1}} \gamma^{\mu_{2}} \gamma^{\mu_{3}} d_{L}^{\beta}\right)-\left(16-a_{11} \epsilon-4 \epsilon^{2}\right) Q_{S 2} \\
& E_{S 2}^{(2)}=\left(\bar{s}_{L}^{\alpha} \gamma_{\mu_{1}} \gamma_{\mu_{2}} \gamma_{\mu_{3}} \gamma_{\mu_{4}} \gamma_{\mu_{5}} d_{L}^{\alpha}\right) \otimes\left(\bar{s}_{L}^{\beta} \gamma^{\mu_{1}} \gamma^{\mu_{2}} \gamma^{\mu_{3}} \gamma^{\mu_{4}} \gamma^{\mu_{5}} d_{L}^{\beta}\right)-\left(256-a_{21} \epsilon-\frac{108816}{325} \epsilon^{2}\right) Q_{S 2}
\end{aligned}
$$

- Results in scheme dependent Wilson coefficient

Factorization of evolution matrix

- QCD amplitude factorizes into two separately scheme and scale independent pieces

$$
C^{i j}(\mu) U\left(\mu, \mu_{0}\right)\left\langle Q_{S 2}\right\rangle\left(\mu_{0}\right)=\left[C^{i j}(\mu) J^{-1}(\mu) U^{(0)}(\mu)\right]\left[\left(U^{(0)}\left(\mu_{0}\right)\right)^{-1} J\left(\mu_{0}\right)\left\langle Q_{S 2}\right\rangle\left(\mu_{0}\right)\right]
$$

$$
\begin{array}{cc}
\eta_{i j} S\left(x_{i}, x_{j}\right) & \hat{B}_{K} \\
\text { perturbative } & \text { non-perturbative }
\end{array}
$$

- For QED amplitude $J(\mu)$ is just a number, hence it is not possible to factorise the amplitude in such way
- As QED ADM is scheme independent, dependence must cancel against the matrix element:

$$
\left\langle Q_{S 2}\right\rangle \equiv\left[1+\frac{\alpha}{4 \pi}\left(\frac{1}{9} a_{11}-\frac{4}{3} \log \frac{\mu_{t}}{\mu_{\mathrm{had}}}\right)+\ldots\right]\left\langle Q_{S 2}\right\rangle^{(0)}
$$

Results

Calculation

- $\mathcal{O}(30,000)$ two-loop diagrams - independently cross-checked
- Renormalized by counterterm insertions and by replacing bare parameters with renormalised ones in addition to expanding in α
- UV and IR divergences cancel in the matching
- Obtain the Wilson coefficient at matching scale and run to 2 GeV

EW renormalization schemes

- Study residual theory uncertainty w.r.t. the higher order ew corrections.
- Three schemes: $\overline{\mathrm{MS}}$, on-shell and hybrid
- For $\overline{\mathrm{MS}}$ scheme:

$$
\hat{C}_{S 2}^{t t}=\frac{\alpha^{2}(\mu)}{8 m_{W}^{2}(\mu)\left(s_{w}^{\overline{M S}}(\mu)\right)^{4}} C_{S 2}^{t t}(\mu)\left\langle Q_{S 2}\right\rangle(\mu)
$$

- matching scale dependence is reduced from
$\pm 12 \%$ at LO to $\pm 0.4 \%$ at NLO

On-shell scheme

- Weak mixing angle defined in terms of physical boson masses: $\sin ^{2} \theta_{w}^{\text {OS }}=1-M_{W}^{2} / M_{Z}^{2}$ $\hat{C}_{S 2}^{t t}=\frac{\alpha^{2}(\mu)}{8 M_{W}^{2}\left(s_{w}^{\mathrm{OS}}\right)^{4}} C_{S 2}^{t t}(\mu)\left\langle Q_{S 2}\right\rangle(\mu), \hat{C}_{S 2}^{t t}=\frac{\alpha(\mu) G_{F}}{4 \sqrt{2}\left(s_{w}^{\mathrm{OS}}\right)^{2}} C_{S 2}^{\prime t t}(\mu)\left\langle Q_{S 2}\right\rangle(\mu), \hat{C}_{S 2}^{t t}=\frac{G_{F}^{2} M_{W}^{2}}{4 \pi^{2}} C_{S 2}^{\prime \prime t}(\mu)\left\langle Q_{S 2}\right\rangle(\mu)$
- NLO corrections are large, indicating slow convergence of the perturbation series

Hybrid scheme

- $s_{w}^{\overline{\mathrm{MS}}}(\mu)$ is defined in the $\overline{\mathrm{MS}}$ scheme, while M_{W} is defined in the on-shell scheme.
- GF norm. shows better perturbative convergence than conventionally used GF2
- Matching scale dependence $\pm 0.4 \%$ at NLO

QCD+EW

- Resummation of QED logs: $\alpha \alpha_{s}^{n} \log ^{n+1}\left(\mu_{t} / \mu_{\text {had }}\right)$ and $\alpha \alpha_{s}^{n} \log ^{n}\left(\mu_{t} / \mu_{\text {had }}\right)$
- Two-loop ADM: $\gamma_{S 2}=\frac{\alpha_{s}}{\pi}+\left(\frac{4 N_{f}}{9}-7\right) \frac{\alpha_{s}^{2}}{16 \pi^{2}}+\frac{\alpha}{3 \pi}-\frac{148}{9} \frac{\alpha \alpha_{s}}{16 \pi^{2}}$

- Small scheme dependence: $C_{S 2}^{\prime \prime t}(2 \mathrm{GeV})=\left(3.90-0.0003 a_{11}\right) \times 10^{-8}$

Results

	NLL QCD	NLL QCD \& NLL QED
$\alpha^{2} /\left(8 M_{W}^{2} s_{w}^{4}\right) C_{S 2}^{t t}(2 \mathrm{GeV}) \times 10^{8}$	$3.96(6)$	$3.98(6)$
$\alpha G_{F} /\left(4 \sqrt{2} \pi s_{w}^{2}\right) C_{S 2}^{\prime t t}(2 \mathrm{GeV}) \times 10^{8}$	$4.00(4)$	$3.98(5)$
$G_{F}^{2} M_{W}^{2} /\left(4 \pi^{2}\right) C_{S 2}^{\prime t t}(2 \mathrm{GeV}) \times 10^{8}$	$4.02(5)$	$3.98(5)$

- Central values of all three normalizations perfectly coincide
- Need the matrix element to cancel scheme dependence
- Temp. solution: choose GF2 norm. and multiply $\eta_{t t}$ by $\left(1-\Delta_{t t}\right)$, with $\Delta_{t t}=0.01 \pm 0.004$

$$
\begin{aligned}
& \left|\epsilon_{K}\right|=2.15(6)_{\text {pert }}(7)_{\text {non-pert }}(15)_{\text {param }} \times 10^{-3} \\
& \left|\epsilon_{K}\right|_{\text {exp }}=(2.228 \pm 0.011) \times 10^{-3}
\end{aligned}
$$

Conclusions

- Presented NLO EW corrections to top-quark contributions to ϵ_{K}
- Discussed scheme-dependence and the need for non-perturbative ME including QED
- See -1.0% shift in central value of Wilson coefficient
- Upcoming three-loop QCD top contributions, two-loop EW charm contributions, twoloop matching for \hat{B}_{K} and possible updated lattice calculations will give more accurate prediction of ϵ_{K}

