
Kaleidoscope of Axion Models and Probes
JiJi Fan

Brown University

PIKIMO meeting, Dec 4, 2021



a ≅ a + 2π fa

What is an axion ? 
a periodic pseudo-scalar field 
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FIG. 1: A classical picture of the neutron. From this picture, an estimate of the neutron eDM may be made.

II. THE STRONG CP PROBLEM AND ITS SOLUTIONS AT THE CLASSICAL LEVEL

A. The Strong CP problem

At its heart, the Strong CP problem is a question of why the neutron electric dipole moment (eDM) is so
small. It turns out that both the problem and all of the common solutions can be described at the classical level.
Classically, the neutron can be thought of as composed of a single charge 2/3 up quark and two charge �1/3 down
quarks. Asking a student to draw the neutron usually ends up with something similar to that in Fig. 2. If asked to
calculate the eDM of the neutron, the student would simply take the classical formula

~d =
X

q~r. (1)

Using the fact that the neutron has a size rn ⇠ 1/m⇡, the student would then arrive at the classical estimate that

|dn| ⇡ 10�13
p

1 � cos ✓ e cm (2)

Thus we have the natural expectation that the neutron eDM should be of order 10�13e cm. Because eDMs are a
vector, they need to point in some direction. The neutron has only a single vector which breaks Lorentz symmetry,
and that is its spin. Thus the eDM will point in the same direction as the spin (possibly with a minus sign).

Many experiments have attempted to measure the neutron eDM and the simplest conceptual way to do so is
via a precession experiment. Imagine that an unspecified experimentalist has prepared a bunch of spin up neutrons
all pointing in the same direction. The experimentalist then applies a set of parallel electric and magnetic fields to
the system, which causes Larmor precession at a rate of

⌫± = 2|µB ± dE|. (3)

After some time t, the experimentalist turns o↵ the electric and magnetic fields and measures how many of the
neutrons have precessed into the spin-down position. This determines the precession frequency ⌫+. The experimen-
talist then redoes the experiment with anti-parallel electric and magnetic fields. This new experiment determines
the precession frequency ⌫�. By taking the di↵erence of these two frequencies, the neutron eDM can be bounded.
The current best measurement of the neutron eDM is [1–3]

|dn|  10�26e cm. (4)

We have thus arrived at the Strong CP problem, or why is the angle ✓  10�13? Phrased another way, the Strong
CP problem is simply the statement that the student should have drawn all of the quarks on the same line!
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FIG. 2: A axion solution to the Strong CP problem is treating the neutron like CO2. If the angle between the up and down
quarks is dynamical, it will relax itself to the minimum energy configuration that has no dipole moment. This dynamical
angle is called the axion.

B. Solutions

There are three solutions to the Strong CP problem that can be described at the classical level. The first requires
that parity be a good symmetry of nature. Under parity, space goes to minus itself.

P : ~x ! �~x. (5)

We first consider a neutron whose spin and eDM point in the same direction, ŝ = d̂n. Remembering that angular
momentum is ~s = ~r ⇥ ~p, we have under parity,

P : d ! �d, s ! s. (6)

Thus a neutron is taken from ŝ = d̂n to ŝ = �d̂n under parity. We have studied the neutron and it is an experimental
fact that there is only a single neutron whose spin is 1/2. Thus the only option is for the neutron to go to itself under
parity. The only way for both ŝ = d̂n and ŝ = �d̂n to be true is if the dipole moment is zero. This is the parity
solution to the Strong CP problem. However, experimentally we have observed that parity is maximally broken
by the weak interactions. Thus it is a bad symmetry of nature and any application to the Strong CP problem is
necessarily more complicated.

The second classical solution is time-reversal (T) symmetry, typically called charge parity (CP) symmetry due
to the fact that the combined CPT symmetry is a good symmetry of nature. Under time reversal,

T : t ! �t. (7)

Considering again a neutron whose spin and eDM point in the same direction, ŝ = d̂n, we find that under time
reversal,

T : d ! d, s ! �s. (8)

As before, a neutron is taken from ŝ = d̂n to ŝ = �d̂n. By the same reasoning, this again means that the neutron
eDM must be zero. As with parity, CP or equivalently T is not a symmetry of nature and is in fact maximally broken
since the CP-violating phase in the CKM matrix is about ⇡/3.

The last solution that can be seen at the classical level is the axion solution. The situation of having two negative
charges on opposite sides of a positive charge seems very natural, just look at CO2. The plus charged carbon is
exactly between the two oxygens with the equilibrium condition being that the angle between the two bonds is
exactly ⇡ or in terms of the angle ✓ = 0. The critical idea for making this situation work is that the angle between
the two bonds is dynamical. If the initial angle is not ✓ = 0, it quickly relaxes to 0. Motivated by this example, the
axion solution is the idea that the angle ✓ is dynamical and can change. It can be proven that the minimum will
always be at ✓ = 0 [4] and the Strong CP problem is solved.

III. THE STRONG CP PROBLEM AT THE QUANTUM LEVEL

We now formulate the Strong CP problem at the quantum level. As the Strong CP problem is a question about
the properties of the neutron, we need to develop a theory of neutrons and low-energy QCD. In this section, we
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Strong CP problem: QCD axion

Peccei, Quinn; Weinberg; Wilczek; Kim; Shifman, Vainshtein, Zakharov; Zhitnitsky; 
Dine, Fischler, Srednicki 1977 - 1981



Other applications

Freese, 
Frieman, 
Olinto 1990

Here: focus on axion monodromy inflation.

Motivation
[Silverstein, Westphal 2008;  
 McAllister, Silverstein, Westphal 2008]
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Axion monodromy inflation

Silverstein, Westphal, McAllister 2008

Preskill, Wise, Wilczek; Dine, 
Fischler; Abbott, Sikivie 1983
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Figure 1. Feynman diagrams for contributions to lepton g� 2. The cyan dots represent insertions
of a derivative coupling of the form (2.6). The magenta dot represents an insertion of an aF F̃

coupling. Unmarked vertices are ordinary gauge interactions.

One technical subtlety, which is not fully addressed in the literature, is a direct cal-

culation of diagram (3) with fermions of all possible masses running in the inner loop. 7

In Refs. [17, 21], the vertex function from the fermion loop with the axion and the two

photons all on mass shell has been computed first and then inserted into diagram (2) to

get an approximated answer for the third diagram. Yet the more proper treatment is as

follows: a) compute the fermion loop contribution to the vertex function with only one

photon on-shell and do not impose the on-shell conditions for the axion and the other

photon; b) insert the vertex function into diagram (2) to get the final answer.8 With the

shift-invariant axion-fermion coupling in Eq. (2.6), we follow the recipe above and perform

a two-loop calculation for diagram (3). The full results are included in App. A. In two

interesting limits, we have

a
(3)
µ ⇡ �

cµµcii↵

8⇡3

m
2
µ

f2
a

ln

✓
⇤2

m
2
i

◆
, mµ ⌧ ma ⌧ mi ⌧ ⇤,

⇡ �
cµµcii↵

8⇡3

m
2
µ

f2
a

✓
ln

⇤2

m2
a
+ 2

◆
, mi ⌧ mµ ⌧ ma ⌧ ⇤, (2.9)

where ⇤ is the UV cuto↵ scale. Note that in the limit mµ ⌧ mi ⌧ ⇤, the contribution

is from a heavy fermion loop and one would expect that it should decouple. The result

above is from the renormalization of aµ due to the axion-fermion couplings at the two-loop

order between mi and ⇤. The formula for diagrams (1) and (2) have been computed in

Ref. [16, 17] and we will include them in App. B.

To be more quantitative, we consider two scenarios below.

• If we only include non-zero cµµ and c�� (all three diagrams in Fig. 1 contribute),

then the parameter space to explain muon g � 2 for ma = 1 and 5 GeV is in Fig. 2.

Allowing cµµ to vary, we show the minimal c��/fa needed to explain the muon g � 2

anomaly as a function of ma in Fig. 3. The allowed parameter space, consistent with

7
A calculation of the two-loop contribution to electron g�2 was carried out in a di↵erent operator basis

and then transformed to our basis in Ref. [39], which result agrees with ours.
8
Ref. [15] did a full two-loop calculation with the operator a¯̀i�5`, following this strategy but assuming

the fermions in the loop being heavy. We also want to consider the case with a fermion lighter than the

muon, i.e., an electron, running in the loop.

– 9 –

Muon g-2

Marciano, Masiero, Paradisi, 
Passera 2016; Bauer, Neubert, 
Thamm 2017; Buen-Abad, Fan, 
Reece, Sun 2021



Model Building: 
go beyond vanilla 
models 

Terrestrial Experiments: 
ABRACADABRA, DM radio, Casper, 
ADMX…

Astrophysical/Cosmic Probes: 
stars, galaxies….

Axion (ALP and QCD axion) 



Plan
 New source of axion potential: axion potential from virtual magnetically charged 

particles. 

 New astrophysical probes of axion couplings: axion echos from supernovae 
remnants; cosmological distance ladders.  

 New cosmological model of QCD axion dark matter: dynamically relaxed initial 
misalignment angle to enlarge the mass window of QCD axion dark matter (if time 
allows). 



New source of axion potential



New source of axion potential
For axion coupling to non-Abelian gauge group, strong dynamics generates a potential 
for axion. 

topological charge density   Leinweber©



Yet for axion coupling to Abelian gauge fields,   , axion could still acquire 

a potential through loops of magnetically charged particles (magnetic 
monopoles and dyons).                                        

Fan, Fraser, Reece and Stout, PRL, 2021

a
fa

FμνF̃μν



Existence of magnetic monopoles: “completeness hypothesis”  Polchinski 2003

Any UV-complete theory of an interacting U(1) gauge field contains magnetic 
monopoles, e.g.,  ’t Hooft-Polyakov (’t H-P) monopole.SU(2) → U(1)



Not only magnetic monopoles, but also dyons (particles with both magnetic and 
electric charges). 

E.g., in ’t H-P case, a residual unbroken global  rotation could be realized by a 
compact real scalar. In 4d, this is described by QM of a particle living on a circle, 

 (dyonic collective coordinate).

U(1)

σ ≅ σ + 2π

0e

{Dyon tower

⋯
ground state m2

0 = m2
M

±e

±2e

±3e

excited states m2
n = m2

M + m2
Δn2

Review: Chapter 4 of “Advanced topics in quantum field theory”, Shifman



Witten effect
For a magnetic monopole at the origin, 

magnetic Gauss’ law: 

electric Gauss’ law:       

A monopole obtains an effective electric charge in the presence of an axion field! 

∇ ⋅ B =
gm

4π
δ(r)

∇ ⋅ E +
e2

4π2
θ (∇ ⋅ B) = 0 ⇒

QE

e
= −

θ
2π

Witten, 1979

 electric charge unit;  : magnetic charge 
unit;  Dirac quantization condition; 
e : gm

egm = 2π

  with  
e2

16π2
θ FF̃ θ =

a
fa



In general, the dyon electric charge is shifted to be 

                                          

The corresponding energy spectrum will be modified as well! 

The Lagrangian for the dyon:                                                 

Conjugate momentum:            

Hamiltonian:                                                                                                                                                                                                                                                                                                                                                                        

QE

e
= n −

θ
2π

, n = 0, ± 1, ± 2,⋯

L =
1
2

·σ2 +
θ

2π
·σ

Πσ = ·σ +
θ

2π

H =
1
2 (Πσ −

θ
2π )

2

⇒ En =
1
2 (n −

θ
2π )

2

: dyonic collective coordinateσ
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the length scale over which the axion field is screened
near the monopole core. In the special case of critical
’t Hooft-Polyakov monopoles [29, 30], we begin with an
SU(2) gauge theory with coupling g. Matching to (1)
gives e = g/2 and k = 2, while matching to (2) (when
rc � r0) gives l� = mm/m2

w where mm = 4⇡v/g and
mw = gv is the W boson mass. (We have chosen the
order-one coe�cient in (4) to be accurate for this case,
but it will di↵er in general theories.)

Because the dyon energy spectrum (3) is ✓-dependent,
we can integrate out the dyons and obtain an e↵ective
potential for ✓. This can be understood either as a sum
of Coleman-Weinberg-type potentials [31] from each dyon
mode n, or as a sum over loops with nontrivial winding
of � around the loop. These two calculations are related
by Poisson resummation, as we explain below. Although
there is prior work on the ✓ potential generated by a gas
of (non-virtual) monopoles and antimonopoles (see [28,
32–34] and follow-ups), the e↵ect of monopole loops on
the vacuum ✓ potential is, as far as we know, absent from
the prior literature.

II. MONOPOLE LOOPS

We would like to compute the vacuum energy in
the presence of “fundamental” magnetic monopoles.
Schematically, the vacuum energy should be derived by
computing a Euclidean path integral of the form

Z(✓) =
X

worldlines

Z
D(fields) e�Se[fields,worldlines,✓] , (5)

and taking the limit of infinite spacetime volume,

Ve↵(✓) = � lim
V!1

1

V
log Z(✓) . (6)

The worldline formalism has previously been applied to
other physical processes involving monopoles, e.g., to pair
production in magnetic fields [35].

In the limit where interactions between the configu-
rations are small, we expect the partition function to
be dominated by disconnected vacuum paths character-
ized by the transition amplitude ZS1(✓), the Feynman-
weighted sum over all paths that are topologically a circle
S1. These contributions exponentiate:

Z(✓) =
1X

n=0

1

n!
(ZS1)n = exp

�
ZS1(✓)

�
. (7)

Hence Ve↵(✓) = �
1
V ZS1 ; we work in the first-quantized

picture to compute the amplitude ZS1 [36]. We sum
over all trajectories that return to the same configura-
tion. This includes an integral over the invariant length
(Schwinger proper time) ⌧ , weighted with a 1/2⌧ to ac-
count for overcounting trajectories related by transla-
tions and reflections. So,

ZS1 =

Z 1

0

d⌧

2⌧
Z(⌧, ✓) , (8)

with Z(⌧, ✓) the sum over transition amplitudes at fixed
✓ of all trajectories with invariant length ⌧ .

There are two ways we can compute ZS1 . For a free
particle of mass m, the gauge fixed transition amplitude
for a trajectory of length ⌧ from point x to point x0 is

hx0
|xi⌧ =

1

2(2⇡⌧)2
exp

✓
�

1

2⌧
(x � x0)2 � m2⌧

◆
(9)

After integrating over all trajectories that begin and end
at the same point and canceling o↵ the a factor of the
spacetime volume from the measure with the factor in
the definition of the e↵ective potential, we obtain

Ve↵ = �

Z 1

0

d⌧

2⌧

1

2(2⇡⌧)2
exp

✓
�

m2⌧

2

◆
. (10)

We will sum over all dyon modes, labeled by n 2 Z.
To simplify the computation, we assume that the dyon
mass spectrum takes the form

m2
n = m2

m + m2
�

✓
n �

✓

2⇡

◆2

, m2
� =

mm

l�
. (11)

This agrees with (3) to order 1/l�, and in certain cases
is an exact consequence of a BPS condition. In general,
there may be power corrections in (mml�)�1. Summing
over the tower of states, we obtain the e↵ective potential

�

X

n2Z

Z 1

0

d⌧

4⌧ (2⇡⌧)2
exp

 
�

m2
m⌧

2
�

m2
�⌧

2

✓
n �

✓

2⇡

◆2
!

.

(12)
Periodicity in ✓, arising from the sum over n, is manifest
after Poisson resummation:

X

n2Z
e�

1
2m2

�⌧(n� ✓
2⇡ )2 =

X

`2Z

s
2⇡

m2
�⌧

exp

✓
�

2⇡2`2

m2
�⌧

+ i`✓

◆
.

(13)
The e↵ective potential then becomes

�
⇡2

m�

X

`2Z

Z 1

0

d⌧ ei`✓

(2⇡⌧)7/2
exp

✓
�

m2
m⌧

2
�

2⇡2`2

m2
�⌧

◆
. (14)

After integrating, the result is

Ve↵(✓) = �

1X

`=1

m2
�m2

m

32⇡4`3
e�2⇡`mm/m� cos(`✓) ⇥

✓
1 +

3m�

2⇡`mm
+

3m2
�

(2⇡`mm)2

◆
, (15)

where we have ignored the irrelevant constant from the
divergent ` = 0 integral.

We can interpret ` in this sum as the winding number
of � around the loop. If we take the relativistic comple-
tion of the action (2) with the dyon collective coordinate
� treated as another (compact) spatial direction in which
the monopole propagates, analogous to the DBI action:

Sm = mm

Z

�
d�

s
dxµ

d�

dxµ

d�
+

l�
mm

✓
dA�

d�

◆2

+

Z

�

✓

2⇡
dA�.

(16)

 in ’t H-P modele−Sinst ∼ e−8π2/g2

periodic

: winding number;  : ground state monopole mass;  mass splitting unit  ℓ mM mΔ :

Integrating out these excited dyonic states with masses depending on axion  
potential for the axion  !

⇒
θ



A hidden gauged  sector with an axion (monopole/dyons in the spectrum). 

Real monopoles could be produced as topological defects through Kibble-Zurek 
mechanism in the early Universe. Kibble 1997; Zurek 1985

Axion mass gets two contributions: 

 Virtual magnetic monopole/dyon contributions; 

 Real magnetic monopole background  Fischler, Preskill 1983

U(1)

A  pheno application



Both axion and monopole (produced in the early Universe) contribute to dark matter. 

ma = 10−13 eV

dark gauge coupling

m
on

op
ol

e 
m

as
s

fa = 1015 GeV



New astrophysical probes of axion 
couplings



Stimulated axion decays

Another attraction of an axion is that it could serve as a cold dark matter candi-

date [10–12]. The simplest canonical mechanism is misalignment: an axion is initially

frozen at some random place in its field space due to the Hubble friction. When the Hub-

ble expansion rate drops around its mass, the axion starts to oscillate around the minimum

of its potential. The coherent oscillations redshift as cold matter and store energy in the

axion field.

Given its theoretical importance, there has been a rapidly growing interest in searching

for axions and their couplings over the years, c.f. [13–35] to name a few. In this article, we

will study a novel technique to probe the coupling of axion dark matter to photons, which

has been under-explored, that is, searching for an “echo”
1 signal from stimulated axion

dark matter decays.2 The basic idea is depicted in Fig. 1: photons from a source traverse

the axion dark matter halo. If the photon energy matches half of the axion mass, it induces

stimulated decays of axion dark matter into two photons. Due to momentum conservation,

these two photons travel in opposite directions with energies equal to half of the axion

mass, ma/2. An observer could receive two fluxes of photons from opposite directions.

One flux is along the line of sight from the source to the observer, which is a superposition

of the continuum emission of the source (blue wavy line) and the line emission from axion

decays with an angular frequency set by ma/2 (purple wavy line). Since the line emission

from the stimulated decays is a much fainter signal, it is challenging to isolate it from the

bright source continuum background. The other flux is the so-called “echo” signal also

from stimulated axion decays, which is along the continuation of the line of sight to the

direction opposite to the source. This one could potentially be a clean signal if there is no

bright source in the opposite direction.

S
O

a
a

“echo”

1

Figure 1. Schematic illustration of the axion echo signal. S and O stand for the source and the
observer respectively while a indicates axion dark matter. Wavy lines represent photons, from either
the source (blue) or stimulated decays of axion dark matter (purple). The photon from stimulated
decays, along the continuation of the line of sight to the direction opposite to the source, is the
echo signal.

The echo technique was first applied and developed in Refs. [37, 38], with the source

being a powerful radio beam shooting from the Earth. Given the experimental challenges,

it will be helpful to identify natural sources in the universe. So far the only astrophysical

source that has been examined in the literature to trigger an echo signal is Cygnus A

(Cyg A), an extragalactic active galactic nucleus [36]. In this work, we point out for the

1This has also been called “axion Gegenschein” [36].
2The axion dark matter’s decay lifetime is still much longer than the age of the universe so it could still

be the dominant component of dark matter.

– 2 –

Caputo, Regis, Taoso and Witte 2018

Eγ = ma/2

photon energy

photon flux



Axion echos

Another attraction of an axion is that it could serve as a cold dark matter candi-

date [10–12]. The simplest canonical mechanism is misalignment: an axion is initially

frozen at some random place in its field space due to the Hubble friction. When the Hub-

ble expansion rate drops around its mass, the axion starts to oscillate around the minimum

of its potential. The coherent oscillations redshift as cold matter and store energy in the

axion field.

Given its theoretical importance, there has been a rapidly growing interest in searching

for axions and their couplings over the years, c.f. [13–35] to name a few. In this article, we

will study a novel technique to probe the coupling of axion dark matter to photons, which

has been under-explored, that is, searching for an “echo”
1 signal from stimulated axion

dark matter decays.2 The basic idea is depicted in Fig. 1: photons from a source traverse

the axion dark matter halo. If the photon energy matches half of the axion mass, it induces

stimulated decays of axion dark matter into two photons. Due to momentum conservation,

these two photons travel in opposite directions with energies equal to half of the axion

mass, ma/2. An observer could receive two fluxes of photons from opposite directions.

One flux is along the line of sight from the source to the observer, which is a superposition

of the continuum emission of the source (blue wavy line) and the line emission from axion

decays with an angular frequency set by ma/2 (purple wavy line). Since the line emission

from the stimulated decays is a much fainter signal, it is challenging to isolate it from the

bright source continuum background. The other flux is the so-called “echo” signal also

from stimulated axion decays, which is along the continuation of the line of sight to the

direction opposite to the source. This one could potentially be a clean signal if there is no

bright source in the opposite direction.

S
O

a
a

“echo”

1

Figure 1. Schematic illustration of the axion echo signal. S and O stand for the source and the
observer respectively while a indicates axion dark matter. Wavy lines represent photons, from either
the source (blue) or stimulated decays of axion dark matter (purple). The photon from stimulated
decays, along the continuation of the line of sight to the direction opposite to the source, is the
echo signal.

The echo technique was first applied and developed in Refs. [37, 38], with the source

being a powerful radio beam shooting from the Earth. Given the experimental challenges,

it will be helpful to identify natural sources in the universe. So far the only astrophysical

source that has been examined in the literature to trigger an echo signal is Cygnus A

(Cyg A), an extragalactic active galactic nucleus [36]. In this work, we point out for the

1This has also been called “axion Gegenschein” [36].
2The axion dark matter’s decay lifetime is still much longer than the age of the universe so it could still

be the dominant component of dark matter.

– 2 –

Arza, Sikivie 2019; Ghosh, Salvado and Miralda-Escude 2020 
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Less background ! 



Axion echos from the entire history of the source 

source observer
<latexit sha1_base64="obbJX/AsAgHwLre+jkNBpLTZaxc=">AAACKHicbZDJTsMwEIYd1hK2Fo5cIiokDqhKUFmOFVw4FkQXqakqx5m0Vh0nsh1EFeUNuMJD8DTcUK88CW6aA20Zydbvf2Y048+LGZXKtqfG2vrG5tZ2acfc3ds/OCxXjtoySgSBFolYJLoelsAoh5aiikE3FoBDj0HHG9/P8p0XEJJG/FlNYuiHeMhpQAlW2npys0G5atfsPKxV4RSiiopoDipG2fUjkoTAFWFYyp5jx6qfYqEoYZCZbiIhxmSMh9DTkuMQZD/NV82sM+34VhAJfbiycvdvR4pDKSehpytDrEZyOTcz/8v1EhXc9lPK40QBJ/NBQcIsFVmzf1s+FUAUm2iBiaB6V4uMsMBEaToLU17nq5quD4Gmmr9SHA0FAM9SMfSyVPO50JCuZpedmZqhs0xsVbQva851rf5YrzbuCpoldIJO0Tly0A1qoAfURC1EUIDe0Dv6MD6NL+PbmM5L14yi5xgthPHzC+cJpDQ=</latexit>

}

signal at to

x

t

echo

Figure 2. Illustration that the echo signal observed depends on the entire history of a time-
dependent source. The source emits a series of pulses (blue) over time. They travel past the
observer and trigger stimulated decays of axion dark matter, resulting in echo photons (red). While
the photons comprising the signal arrive at the observer at the same time to, they are associated
with pulses emitted from the source at di↵erent times.

first time that the echo signal relies on the historical luminosity of the photon source, while

the signal of photons from stimulated decays of axion dark matter that travel along with

the source photon as studied in Ref. [39, 40] require the brightest radio sources today. This

opens up the possibility to probe axion DM with time-varying radio sources that may be

dim today but were once very bright, such as supernova remnants (SNRs).

The analyses of SNRs will also be drastically di↵erent from Cyg A, and any other

relatively stable sources over the time scale for light to travel across the dark matter halo.

An SNR, as a time-dependent source, typically starts with a huge photon flux from the

explosion of a supernova and undergoes several di↵erent phases before eventually merging

with the interstellar medium. In this case, the echo signal could be induced by the flux

from the SNR at time much earlier than that at which the observation is made. For a

more intuitive understanding, one could consider an SNR emitting a series of pulses over

time, as shown in the vertical direction of the cartoon in Fig. 2. The pulse emitted at

earlier times could pass the observer and travel further before triggering the decay of axion

dark matter and generating an echo photon, while the later-emitted pulse travels a shorter

distance past the observer before triggering the axion stimulated decays, as demonstrated

by the horizontal direction in Fig. 2. These echo photons could travel back and arrive at

the observer at the same time to. In other words, the observed signal is a collection of the

echo photons generated by the pulses from the source at di↵erent times. More concretely,

as we will show in a more rigorous way, the signal is an integration over the history of
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Axion echos from the entire history of the source 
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Figure 2. Illustration that the echo signal observed depends on the entire history of a time-
dependent source. The source emits a series of pulses (blue) over time. They travel past the
observer and trigger stimulated decays of axion dark matter, resulting in echo photons (red). While
the photons comprising the signal arrive at the observer at the same time to, they are associated
with pulses emitted from the source at di↵erent times.

first time that the echo signal relies on the historical luminosity of the photon source, while

the signal of photons from stimulated decays of axion dark matter that travel along with

the source photon as studied in Ref. [39, 40] require the brightest radio sources today. This

opens up the possibility to probe axion DM with time-varying radio sources that may be

dim today but were once very bright, such as supernova remnants (SNRs).

The analyses of SNRs will also be drastically di↵erent from Cyg A, and any other

relatively stable sources over the time scale for light to travel across the dark matter halo.

An SNR, as a time-dependent source, typically starts with a huge photon flux from the

explosion of a supernova and undergoes several di↵erent phases before eventually merging

with the interstellar medium. In this case, the echo signal could be induced by the flux

from the SNR at time much earlier than that at which the observation is made. For a

more intuitive understanding, one could consider an SNR emitting a series of pulses over

time, as shown in the vertical direction of the cartoon in Fig. 2. The pulse emitted at

earlier times could pass the observer and travel further before triggering the decay of axion

dark matter and generating an echo photon, while the later-emitted pulse travels a shorter

distance past the observer before triggering the axion stimulated decays, as demonstrated

by the horizontal direction in Fig. 2. These echo photons could travel back and arrive at

the observer at the same time to. In other words, the observed signal is a collection of the

echo photons generated by the pulses from the source at di↵erent times. More concretely,

as we will show in a more rigorous way, the signal is an integration over the history of
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Axion echos from supernovae remnants

late luminosity, {L⌫,0; tpk; ttran; tage; �(↵)}, or any other combination such as luminosity at

early and late times with the age being inferred, {L⌫,pk; tpk; ttran;L⌫,0; �(↵)}.

In summary, the model for the SNR light curve we will use throughout the rest of this

paper is:

L⌫(t) =

(
L⌫,free(t) t  ttran

L⌫,ad(t) t > ttran

L⌫,ad(ttran) = L⌫,free(ttran) . (3.7)

This is shown in Fig. 5. For the model to make sense, the light curve should reach the

peak luminosity before its transition to the adiabatic phase, i.e. tpk > ttran.

�pk �tran
�

Lpk

L�

Figure 5. A schematic picture of the radio light curve of a SNR in our analysis, obeying Eq. (3.7).
For t  ttran the light curve follows Eq. (3.3); while for t > ttran it follows Eq. (3.6) instead.

3.2 Supernovae rate

In our analysis, we will not only consider the SNRs that have already been observed and

collected in the Green Catalog but also make projections for possible SNRs that could be

observed in the future. Thus, in this section, we will estimate the total number of SNRs

in our galaxy. It is estimated that the supernovae formation rate is about 0.02 to 0.03

per year [57]. Considering a time ⇠ 105 years, the time scale for a SNR going through

the first three phases before merging with the ISM, there should be 2000 ⇠ 3000 SNRs

in the Milky Way. Yet there are only 294 SNRs that have been successfully identified so

far [49]. Explanations of the deficit in observation and completeness of the SNR catalogs

are discussed in [46, 48, 56, 58].

We will further estimate the number of SNRs in our neighborhood. In Ref. [48], the

distribution of SNRs inside the Milky Way is estimated using an empirical two-dimensional

density distribution:

⌃(R) /

✓
R

R�

◆a

exp

✓
�b

(R � R�)

R�

◆
, (3.8)

where ⌃(R) is the surface density of SNRs at radius R from the galactic center and R� =

8.5 kpc is the distance from the Sun to the galactic center. The best fit in Ref. [48] is

– 12 –

free expansion 

 adiabatic

Buen-Abad, Fan, Sun; Sun, Schutz, Nambrath, Leung, Masui 2021
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Figure 7. The sensitivity reach for axion dark matter coupling ga�� of SKA1, for the echo produced
by SNR G39.7-2.0. We take a signal-to-noise ratio of s/n = 1. SKA1-low and SKA1-mid, in both
their single dish and interferometer modalities, are combined into a single curve. We assume a
typical value of ttran = 200 years. The reach for the conservative “adiabatic-only” case is shown
in blue. The reach for the “free+adiabatic” case is plotted in red. For the latter case, we further
assume tpk = 3, 000 days, which yields L1GHz,pk = 3 ⇥ 1030 erg s�1 Hz�1. The grey regions are
existing bounds from previous literature: CAST [14, 15], ADMX [16–22], RBF+UF [23, 24], CAPP
[25–27], HAYSTACK [28], QUAX [29, 30], and neutron stars [31–33]. These bounds are taken from
github.com/cajohare/AxionLimits.

that makes it a more promising source than Cassiopeia A. The horizontal red lines in turn

represent the mean (solid), ±1� (dashed), and ±2� (dotted) values for tpk (see Table 1). It

is evident from this figure that satisfying Eq. (3.7) for typical values of ttran and tpk yields

large L1GHz,pk and even stronger sensitivities to ga�� .

5.2 Projection of unobserved SNR

In this section, we want to first explore echo signals triggered by extra-old SNRs with ages

above 104 years, which are briefly discussed in Sec. 3.3. They could be long past their peak

times and haven’t been observed so far. But they could still potentially lead to observable

axion echo signals, as we will show. In addition, we will also consider an opposite scenario:

young supernova explosion that could happen close to us in the near future. In this case,

if the peak flux density is very high (e.g., comparable or higher than that of a solar burst),

it could also lead to an observable echo signal.
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 years old (3 × 104 − 105)

Not among the brightest 
radio source today ! 
Brightest extrasolar radio 
source above 1 GHz, Cas 
A (also a SNR of 340 
years old), is ~ 30 times as 
bright as this one. 

Radio telescope: 
SKA1



Dimming of bright sources

<latexit sha1_base64="XgCH3xXOQ77HevegvSHfR+SpcEM="></latexit>�



<latexit sha1_base64="VyJyci93psORsX8DxWTAVkY8tvQ="></latexit>

B

<latexit sha1_base64="5uA5hmsUjVwBcDnElepvXhEpH/M="></latexit>a

<latexit sha1_base64="6A+4I/C2wpV831UBVnoLlSj52o8="></latexit>

�ga��
4

aFµ⌫ F̃
µ⌫ = ga��aE ·B

<latexit sha1_base64="+sc5mPadRJ4d+/4NksnyOeiJ3Is="></latexit>

Pa�(x) ⇠ (ga��B)2 x2

Dimming of bright sources



<latexit sha1_base64="VyJyci93psORsX8DxWTAVkY8tvQ="></latexit>

B

<latexit sha1_base64="5uA5hmsUjVwBcDnElepvXhEpH/M="></latexit>a
Further

Dimming of bright sources



Cosmic Distance 

DU;LY�����������

&RVPLF�'LVWDQFH

�

+WDDNG�6GNGUEQRG

Hubble Telescope  



Figure 4. Residuals of the Pantheon SNIa apparent magnitude (left) and the cluster ADD (right)
data, compared to a ⇤CDM benchmark with ⌦⇤ = 0.69, H0 = 69 km sec�1 Mpc�1, and M =
�19.39. The colors denote the deviation from this benchmark in these observables, for ne,IGM =
1.6 ⇥ 10�8 cm�3, ma = 10�16 eV, and both ga�� = 6 ⇥ 10�13 GeV�1 (solid, orange) and ga�� =
6⇥10�12 GeV�1 (dot-sahed, green). In the right panel, both the case with (diamonds) and without
(lines) ICM e↵ects are presented. For the former, we use the magnetic field model A.

same mass range from CAST [72], SN1987a [63] (note that [73] proposes a looser bound,

due to an alternative modeling of the neutrino emission), X-ray searches from super star

cluster [74] and X-ray spectroscopy from AGN NGC 1275 [57] (note that the ICM magnetic

field modeling for NGC 1275 bound is questioned in [60]). We could see that,

• the weakest limit we have, assuming that no X-ray photon-axion conversion in ICM,

leads to a bound comparable to existing ones from SN1987a and super star cluster:

ga�� . (4 � 5) ⇥ 10�12 GeV�1 for ma . 5 ⇥ 10�13 eV, assuming BIGM = 1 nG

and sIGM = 1 Mpc. For other IGM benchmarks, the bounds should be scaled by

(nG/BIGM)
⇣p

Mpc/sIGM

⌘
accordingly for light axions.

• if the magnetic field in ICM is described by model A in Eq. (2.10), the strongest limit

we have pushes ga�� . (5� 6)⇥ 10�13 GeV�1 for ma . 5⇥ 10�12 eV. As mentioned

above, these bounds are independent of BIGM and sIGM. Note that to avoid a busy

plot, we do not show the bounds assuming model B and C in Eqs. (2.11) and (2.12).

They are weaker than the one from model A but still stronger than the weakest limit

assuming only IGM conversion.

Note that axions in the narrow mass range (6 ⇥ 10�13
� 10�11) eV are ruled out by

superradiance of stellar black holes [75] and for even lighter axions with mass around or

below 10�20 eV, there exists interesting constraints on ga�� from AGN [76], protoplanetary

disk polarimetry [77] and CMB birefringence [78], which we do not show in the figure.

In addition, the distortion of CMB spectrum due to � � a conversion only places strong

bounds at ma > 10�14 eV [65, 66], which scales with BIGM.

It has been noted in [79] that for ultralight axions, cosmological considerations re-

quiring axions to have a matter-power spectrum that matches that of cold dark matter

constrains the magnitude of the axion couplings to the visible sector. As a result, at least

part of the parameter space the cosmic distance measurements could probe is associated
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distance)

redshift

Type Ia SN Pantheon data set (1048 SNIa)

Buen-Abad, Fan, Sun 2020



Red: type Ia SN Pantheon luminosity distance data set

Blue: galaxy cluster angular diameter distance data set 

Solid: anchor  with late 
time measurements, 
SH0Es; 

Dashed: anchor  with 
early time measurements, 
Planck. 

H0

H0

Subject to uncertainties of 
magnetic field modeling 

Buen-Abad, Fan, Sun 2020



New cosmological model of QCD axion 
dark matter



Enlarging the mass window of QCD axion DM
Vanilla QCD axion DM model: Misalignment mechanism:  Preskill, Wise, Wilczek; Dine, 
Fischler; Abbott, Sikivie 1983
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Figure 4: Evolution of various quantities in the exact solution to the background evolution
of an ALP, Eq. (58), for a radiation-dominated universe (p = 1/2). Dimensionful quanti-
ties have arbitrary normalization. Vertical dashed lines show the condition defining aosc..
Further discussion of this choice, and the approximate solution for the energy density, is
given in the text.
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QCD axion (PQ breaking during inflation)

θ0 ∼ 𝒪(1), fa ≲ 𝒪(1012) GeV

Axion dark 
matter mass in 
scenario of PQ 
breaking after 
inflation: 
Buschmann, 
Foster et.al 2021



Enlarging the mass window of QCD axion DM
Light QCD axion DM: axion mass  eV and , overproduction 
from misalignment. Relax the initial misalignment angle to make . 

Anthropic: Tegmark, Aguirre, Rees, Wilczek 2006;

Exponentially long inflationary period: Takahashi, Yin, Guth 2018; Graham, Scherlis 2018;

Dynamical axion potential during and after inflation: Dvali 1995; Co, 
Gonzalez, Harigaya 2018; Buen-Abad, Fan 2019;

 

≪ 10−5 fa ≫ 1012 GeV
θ0 ≪ 1



Basic mechanism and requirements

�dil�

During inflation

Steeper axion potential during inflation. Axion oscillates during inflation. By the end 
of inflation, axion misalignment angle .  θdil ≪ 1



Relaxed to the usual axion potential after inflation;

The minima of the two potentials may not be at the same place, the mismatch 
characterized by  . θmis

�mis
� �dil

�

During inflationAfter inflation



After inflation, axion is frozen until the Hubble rate drops around its mass. Then it 
starts to oscillate again. The new misalignment angle is of order . 

 due to inflation. Thus if , the misalignment angle of axion when it starts 
to oscillate again after inflation is . 

max(θmis, θdil)

θdil ≪ 1 θmis ≪ 1
≪ 1

�mis
� �dil

�

During inflationAfter inflation



What we want: 

�dil
�

During inflationAfter inflation



Approximate alignment of the minima of the QCD axion potential during 
and after inflation: negligible new CP phases. 

In general, new CP phases are unavoidable when one introduces new particles 
beyond the Standard Model to generate a dynamical axion potential.

�mis
� �dil

�

During inflationAfter inflation



Small UV instantons
Color instanton contribution to the axion potential  : 

Holdom, Peskin 1982; Dine, Seiberg 1986; Flynn, Randall 1987; Choi, Kim, Sze 1988…

A new elegant way to realize this idea: Agrawal, Howe 2017

∝ e−2π/αs αs ↑ , e−2π/αs ↑

3.1 UV instanton to raise the axion mass

It has been proposed quite a while back that if QCD becomes strong at high energies, the

correction from small color instantons to the axion potential could be significant [28–33].

In this type of scenario such as the model in Ref. [31], one needs to change the signs of

QCD beta function coe�cients twice: once to make the QCD gauge coupling run stronger

towards the UV and once to make it asymptotically free at an even higher energy. To

achieve the first flip of the sign, one usually needs to introduce either a large number

of fermions in small representations of SU(3)c such as fundamental representations or a

vector-like pair of fermions in large representations. The potential issue with the first

approach is that one could introduce new CP phases due to mixing of the fermions, which

shifts the minimum of the QCD axion potential. For the second approach which only

requires a couple of additional matter fields with no new CP phase, it is di�cult to embed

them in a grand unified theory to make QCD asymptotically free eventually. While there is

clearly no no-go theorem for this scenario, we will not pursue this direction in this article.

Recently a new way is proposed to increase the gauge coupling at high energy and thus

the contribution from small instanton through higgsing a product gauge group [27].2 The

main advantage of this approach is that no new CP phase is introduced. Since it is the

main mechanism we rely on to increase the axion mass during inflation, we briefly review

the key idea below. Consider that at an energy scale M � TeV, the QCD gauge group

emerges from higgsing a product gauge group:

SU(3)1 ⇥ SU(3)2 ! SU(3)c. (3.1)

The higgsing could be achieved by having a complex scalar, ⌃, transforming as a bi-

fundamental, (3, 3̄), under the product gauge group. This complex scalar has a gauge

invariant potential [36]

V(⌃) = �m
2
⌃Tr

⇣
⌃⌃†

⌘
+

�

2

⇣
Tr

⇣
⌃⌃†

⌘⌘2
+



2
Tr

⇣
(⌃⌃†)2

⌘
, (3.2)

where �, are order one real numbers barring fine-tunings and are positive so that the

potential is bounded from below.3 When m
2
⌃ > 0, ⌃ obtains a vacuum expectation value

(VEV), h⌃i = f⌃
2 13 with

f⌃ =
m⌃

p
+ 3�

, (3.3)

and breaks the product of SU(3)’s to the diagonal gauge group, which is identified as

SU(3)c. The symmetry breaking scale M is defined as

M
2 = (g21 + g

2
2)f

2
⌃, (3.4)

where g1 and g2 are the gauge couplings of SU(3)1 and SU(3)2 respectively. The gauge

couplings, g1 and g2 are related to the standard model strong coupling gs as

1

↵s(M)
=

1

↵1(M)
+

1

↵2(M)
, (3.5)

2
Similar models in color unified theory have been developed in Ref. [34], while others have been studied

in the context of lepton flavor universality violation in B-meson decays [35].
3
For the potential in Eq. (3.2), we gauge an extra U(1) factor which forbids trilinear terms such as Det⌃

and charge the link field under the U(1).
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⌃ : (3, 3̄)
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At symmetry breaking scale , M

3.1 UV instanton to raise the axion mass

It has been proposed quite a while back that if QCD becomes strong at high energies, the

correction from small color instantons to the axion potential could be significant [28–33].

In this type of scenario such as the model in Ref. [31], one needs to change the signs of

QCD beta function coe�cients twice: once to make the QCD gauge coupling run stronger

towards the UV and once to make it asymptotically free at an even higher energy. To

achieve the first flip of the sign, one usually needs to introduce either a large number

of fermions in small representations of SU(3)c such as fundamental representations or a

vector-like pair of fermions in large representations. The potential issue with the first

approach is that one could introduce new CP phases due to mixing of the fermions, which

shifts the minimum of the QCD axion potential. For the second approach which only

requires a couple of additional matter fields with no new CP phase, it is di�cult to embed

them in a grand unified theory to make QCD asymptotically free eventually. While there is

clearly no no-go theorem for this scenario, we will not pursue this direction in this article.

Recently a new way is proposed to increase the gauge coupling at high energy and thus

the contribution from small instanton through higgsing a product gauge group [27].2 The

main advantage of this approach is that no new CP phase is introduced. Since it is the

main mechanism we rely on to increase the axion mass during inflation, we briefly review

the key idea below. Consider that at an energy scale M � TeV, the QCD gauge group

emerges from higgsing a product gauge group:

SU(3)1 ⇥ SU(3)2 ! SU(3)c. (3.1)

The higgsing could be achieved by having a complex scalar, ⌃, transforming as a bi-

fundamental, (3, 3̄), under the product gauge group. This complex scalar has a gauge

invariant potential [36]
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where �, are order one real numbers barring fine-tunings and are positive so that the

potential is bounded from below.3 When m
2
⌃ > 0, ⌃ obtains a vacuum expectation value

(VEV), h⌃i = f⌃
2 13 with

f⌃ =
m⌃

p
+ 3�

, (3.3)

and breaks the product of SU(3)’s to the diagonal gauge group, which is identified as

SU(3)c. The symmetry breaking scale M is defined as

M
2 = (g21 + g

2
2)f

2
⌃, (3.4)

where g1 and g2 are the gauge couplings of SU(3)1 and SU(3)2 respectively. The gauge

couplings, g1 and g2 are related to the standard model strong coupling gs as
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↵s(M)
=

1

↵1(M)
+

1

↵2(M)
, (3.5)

2
Similar models in color unified theory have been developed in Ref. [34], while others have been studied

in the context of lepton flavor universality violation in B-meson decays [35].
3
For the potential in Eq. (3.2), we gauge an extra U(1) factor which forbids trilinear terms such as Det⌃

and charge the link field under the U(1).
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No new fermions beyond the SM need to be introduced. No new phases! 



Buen-Abad, Fan 2019
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Axion physics is an old subject but still a lot of fun things to explore from many different 
directions.

 Axion potential from virtual magnetically charged particles; 

 Different types of astrophysical probes to axion coupling. 

 Dynamical axion potential: QCD axion dark matter could have a decay constant as 
high as the GUT scale; close interplay with inflationary physics;

Clearly there are more out there for the axion hunters! 

Outlook



Thank you! 



Back up



In general, the energy spectrum of dyons in the presence of an axion:  

Integrating out these excited states with masses depending on axion  potential for 
the axion  !

⇒
θ

m2
n − m2

M = m2
Δ (n−

θ
2π )

2 periodicity: 

n → n + 1, θ → θ + 2π



Two viewpoints:

1. Integrate out the dyons to get a Coleman-Weinberg potential for axion.

2. Do the path integral over all monopole loops. 

Related by Poisson resummation

2

We can estimate l� by comparing (3) to the energy of
the classical field configuration outside a monopole in an
axion background, following [29], from which we obtain:

l� ⇠
4⇡

e2k2
r⇤ , r⇤ = max(rc, r0), (4)

where rc = ⇡/(e2mm) is the classical radius of the mag-
netic monopole (of mass mm) and r0 = ke/(8⇡2f) is
the length scale over which the axion field is screened
near the monopole core. In the special case of critical
’t Hooft-Polyakov monopoles [30, 31], we begin with an
SU(2) gauge theory with coupling g. Matching to (1)
gives e = g/2 and k = 2, while matching to (2) (when
rc � r0) gives l� = mm/m2

w where mm = 4⇡v/g and
mw = gv is the W boson mass. (We have chosen the
order-one coe�cient in (4) to be accurate for this case,
but it will di↵er in general theories.)

Because the dyon energy spectrum (3) is ✓-dependent,
we can integrate out the dyons and obtain an e↵ective
potential for ✓. This can be understood either as a sum
of Coleman-Weinberg-type potentials [32] from each dyon
mode n, or as a sum over loops with nontrivial winding
of � around the loop. These two calculations are related
by Poisson resummation, as we explain below. Although
there is prior work on the ✓ potential generated by a gas
of (non-virtual) monopoles and antimonopoles (see [29,
33–35] and follow-ups), the e↵ect of monopole loops on
the vacuum ✓ potential is, as far as we know, absent from
the prior literature.

II. MONOPOLE LOOPS

We would like to compute the vacuum energy in
the presence of “fundamental” magnetic monopoles.
Schematically, the vacuum energy should be derived by
computing a Euclidean path integral of the form

Z(✓) =
X
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Z
D(fields) e�Se[fields,worldlines,✓] , (5)

and taking the limit of infinite spacetime volume,

Ve↵(✓) = � lim
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logZ(✓) . (6)

The worldline formalism has previously been applied to
other physical processes involving monopoles, e.g., to pair
production in magnetic fields [36].

In the limit where interactions between the configu-
rations are small, we expect the partition function to
be dominated by disconnected vacuum paths character-
ized by the transition amplitude ZS1(✓), the Feynman-
weighted sum over all paths that are topologically a circle
S1. These contributions exponentiate:
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Hence Ve↵(✓) = �
1
VZS1(✓); we work in the first-quantized

picture to compute the amplitude ZS1(✓) [37]. We sum

over all trajectories that return to the same configura-
tion. This includes an integral over the invariant length
(Schwinger proper time) ⌧ , weighted with a 1/2⌧ to ac-
count for overcounting trajectories related by transla-
tions and reflections. So,

ZS1 =
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Z(⌧, ✓) , (8)

with Z(⌧, ✓) the sum over transition amplitudes at fixed
✓ of all trajectories with invariant length ⌧ .
There are two ways we can compute ZS1 . For a free

particle of mass m, the gauge fixed transition amplitude
for a trajectory of length ⌧ from point x to point x0 is
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After integrating over all trajectories that begin and end
at the same point and canceling o↵ the a factor of the
spacetime volume from the measure with the factor in
the definition of the e↵ective potential, we obtain
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We will sum over all dyon modes, labeled by n 2 Z.
To simplify the computation, we assume that the dyon
mass spectrum takes the form
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This agrees with (3) to order 1/l�, and in certain cases
is an exact consequence of a BPS condition. In general,
there may be power corrections in (mml�)�1. Summing
over the tower of states, we obtain the e↵ective potential
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Periodicity in ✓, arising from the sum over n, is manifest
after Poisson resummation:
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After integrating, the result is
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where we have ignored the irrelevant constant from the
divergent ` = 0 integral.
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the vacuum ✓ potential is, as far as we know, absent from
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where we have ignored the irrelevant constant from the
divergent ` = 0 integral.
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where we have ignored the irrelevant constant from the
divergent ` = 0 integral.


