
RDF Performance/Functionality Improvements

Josh Bendavid (CERN)

Oct. 28, 2021
ROOT PPP Meeting

J.Bendavid RDF Improvements 1



Introduction

Working on precision W measurements in CMS → large
number of data and Monte Carlo events with little scope for
skimming → event loop speed is critical for analysis
development/fast iteration

Main analysis workflow (with RDataFrame): CMS NANOAOD
→ histograms + systematic variations for binned maximum
likelihood fit

Several important auxiliary workflows as well for
corrections/calibrations

Using RDataFrame from python is extremely convenient (and
allows mixing C++ and numba-jitted python functions)

Encountered some functionality limitations, and discussed
some potential performance improvements with Enrico
(related also to some points from last week:
https://eguiraud.web.cern.ch/eguiraud/decks/20211014_ppp_new_rdf_interfaces/

J.Bendavid RDF Improvements 2

https://eguiraud.web.cern.ch/eguiraud/decks/20211014_ppp_new_rdf_interfaces/


RDF Define and Filter from python

In C++, Define and Filter can work with callable objects
(with non-overloaded call operator), (non-overloaded) free
functions, and string expressions

Currently in python, callable objects work, but not free
functions

n.b. calling Define or Filter with string expressions leads to an
additional layer of indirection/virtual function calls in the
graph via RJittedDefine/Filter

J.Bendavid RDF Improvements 3



Improving Define/Filter from python

Implement a “pythonization” (supported feature in
pyroot/cppyy to overlay a C++ function with a python
function, which would typically do some processing of the
arguments and then call the underlying C++ function in order
to improve the python interface)

For Define/Filter this can accomplish several things:

Wrap free functions, or class member functions in appropriate
callable objects
Infer types of columns from the graph and directly call the
fully typed version of Define/Filter to avoid jitting from C++
and get directly an appropriate RDefine or RFilter object
instead of RJittedDefine or RJittedFilter with extra layer of
indirection (Enrico was studying the performance impacts of
this in the context of DistRDF:
https://indico.cern.ch/event/1084843/contributions/4561167/attachments/2324353/

3958709/PPP%20Improving%20the%20performance%20of%20DistRDF%20tasks.pdf)
Infer column names from function arguments where possible

J.Bendavid RDF Improvements 4

https://indico.cern.ch/event/1084843/contributions/4561167/attachments/2324353/3958709/PPP%20Improving%20the%20performance%20of%20DistRDF%20tasks.pdf
https://indico.cern.ch/event/1084843/contributions/4561167/attachments/2324353/3958709/PPP%20Improving%20the%20performance%20of%20DistRDF%20tasks.pdf


Improving Define/Filter from python

Prototype for the Define case implemented in
https://github.com/root-project/root/pull/9174 (some small fixes needed, will
be pushed ASAP)

Aside from pythonization, also improves the C++ interface to
allow (optionally) specifying the column types explicitly rather
than inferring them from the Callable (allows use of overloads,
and implicit conversions, ie float vs double don’t have to
match exactly in function argument vs column type, etc)

Targeted interface extensions to TCling and cppyy
TemplateProxy to allow needed information to be extracted
(for column name inference from function arguments, and to
access the bound class instance for a templated member
function respectively)

Can be easily extended to Filter

J.Bendavid RDF Improvements 5

https://github.com/root-project/root/pull/9174


Improving Define/Filter from python

J.Bendavid RDF Improvements 6



Improving Define/Filter from python

J.Bendavid RDF Improvements 7



Further Improvements

Using pythonization to fully specify types for Histo1D, Fill,
Book, etc is straightforward (already have this implemented,
PR soon)

Currently even with fully typed versions of Define, Histo1D,
Fill, Book, etc in C++, RDefine and RAction objects are used
via RDefineBase and RActionBase virtual calls → prevents
inlining

“Column readers” which access values from defined columns
or from the tree/datasource are also accessed through
RColumnReader base virtual calls

Filters are directly accessed with the fully templated RFilter
type

Can this be improved?

J.Bendavid RDF Improvements 8



Further Improvements: Fully Inlined graphs

“Minimal” change: Filter, Define, Histo1D, Fill, Book, etc
calls can be extended to optionally accept additional template
parameters for the specific column reader types

Minor extension to RDefineReader to optionally accept
template parameter for specific define type

Since columns in RDF are accessed by name, actually using
this interface from C++ is extremely inconvenient since
complex types have to be specified by hand (avoiding this
would require major changes to the user-facing interface in
RDF)

From pythonizations these types can all be inferred at run
time and passed as template parameters automatically

Implementation of the above in progress (and mostly working
already)

J.Bendavid RDF Improvements 9



Further Improvements: Fully Inlined graphs

Last remaining step: The loop over actions in the final
execution of the graph calls the actions through RActionBase
(no way to avoid this in C++ for the “lazy” triggering of the
graph over all filters)

But the final loop over the actions can be jitted with specific
RAction types, implementation also in progress (this jitting
needs to be done from C++ to preserve the “lazy” automatic
triggering of graph execution however)

example of jitting in C++ with type casting of function
pointer (better/more efficient way to do this?)

J.Bendavid RDF Improvements 10



Further Improvements: Fully Inlined graphs

example of jitting in C++ with type casting of function pointer

(better/more efficient way to do this? would need something similar for

jitted loop over actions)

J.Bendavid RDF Improvements 11



Jitting Performance

All of the above assumes high performance of jitted code at
O2 or O3

With Axel’s PR at https://github.com/root-project/root/pull/7283 to fix
inlining, plus a fix to avoid null ptr checks (especially when
instantiating templates from cppyy) have gotten jitted code
performance essentially equivalent to precompiled code at O3
in test cases with complex template instantiations (boost
histograms)

Once graph inlining functionality is consolidated, will test
performance in this configuration (compilation, jitting,
runtime comparisons)

Will definitely be some jitting-time vs runtime tradeoff here,
level/mechanism of configurability, and defaults to be
discussed

J.Bendavid RDF Improvements 12

https://github.com/root-project/root/pull/7283


Conclusions

Advanced implementation of improvements to usability of
calls to RDF Define (and soon filter) from python

WIP on performance improvements towards allowing
compilation (or more likely jitting) of a fully templated/inlined
graph

n.b. I haven’t forgotten about
https://github.com/root-project/root/pull/7499 to enable ND histograms and
more flexible mixed scalar/vector filling of histograms from
RDF, will update this to take into account comments and
adopt some streamlining enabled by C++14, but this
probably shouldn’t be merged before jitting performance
improvements, because compiling that STL stuff without
optimizations would be suboptimal

J.Bendavid RDF Improvements 13

https://github.com/root-project/root/pull/7499

