Medical Accelerators in BDSIM

William Shields

(william.shields@rhul.ac.uk)

JAI Fest

10th December 2021

Proton Therapy: Concept

- 70-250 MeV protons to deliver a dose at a precise depth the Bragg peak.
- Depth dependant on particle energy.
 - Control position of the dose delivered to the patient.

- Spread Out Bragg Peak (SOBP): multiple beams with different energies.
 - Uniform dose across the tumour.
 - Reduced dose to the surrounding healthy tissue.
- Beams commonly delivered through gantries that rotate around patients.
- Multi-room facilities as beam lines from a fixed energy cyclotron.
- Compact single-room solutions.

Proton Therapy: Gantry Modelling

- Modelling used to understand & improve accelerator performance.
 - Particle tracking: MADX, PTC, TRANSPORT, Sixtrack, OPAL, etc.
 - Typically no particle-matter interactions can limit the validity of optics model.
- Typical technique: run tracking codes, inspect machine optics, and identify regions of interest.
 - Develop independent Monte Carlo simulations as required in a toolchain.

- Single-room compact solutions require more detailed simulation.
 - Tight coupling of beam characteristics, beam losses, and shielding.
 - Needs simultaneous consideration: only achievable with start-to-end Monte-Carlo beam line modelling.

BDSIM

- Beam Delivery Simulation (BDSIM):
 - Open-source code for Monte Carlo particle tracking through 3D models of accelerators.
- Combines Geant4's geometry & particlematter interaction physics with accelerator tracking routines.
- Specific developments added and validated for medical beam line modelling.
 - Tracking routines, variance reduction, scoring, degrader, etc.

BDSIM Paper: Computer Physics Communications (252), July 2020, 107200

BDSIM Manual: http://www.pp.rhul.ac.uk/bdsim/

- Model energy deposition throughout a particle accelerator.
- Example:
 - Protons deliberately collide with an energy degrader & scatter.
 - Aperture hits downstream.
 - Secondary particles continue propagating.

- Scatter off accelerator components & environment (air). Energy deposited in magnets & shielding. Aperture Energy deposition Scattering impact Deliberate impact **Patient** Gantry rotation Energy axis degrader Quadrupole Sector bend Concrete

BDSIM Medical Studies

- RHUL In-House Model
 - Demonstrate BDSIM's medical capabilities
- IBA & ULB
 - ProteusOne
 - ProteusPlus
- CCAP
 - Design of proposed UK radiobiology research facility
- MedAustron
 - Nozzle & collimation studies
- PSI
 - Isotope production beam line, gantry 2 & 3 simulations
- Huddersfield/Manchester
 - Beam scraping diagnostic tool to measure beam energy & energy spread
- Clatterbridge
 - Ocular proton therapy beam line (UCL/Liverpool)

BDSIM In-House Model

Shielding wall with aperture

Example tunnel

shielding

- Overcome limitations of traditional tracking codes.
- Publication to be submitted imminently.
- Gantry 2 from Paul Scherrer Institute in Switzerland.

- Lattice publicly available: http://aea.web.psi.ch/Urs_Rohrer/MyFtp

- Conceptual design – different from real machine.

- Since added geometry for shielding, magnet supports, cyclotron, nozzle, & water phantom.

Treatment Room Example Shielding

Maze

Gantry Pit & Treatment

Room

Beam

Transport

JAI Fest - 10th December 2021

Optics & Losses

- Reasonable agreement seen with PTC.
 - Difference due to losses.
 - Wide aperture model 3.75 cm nominal aperture.
- Optics validation of many machines in BDSIM.
 - Medical & beyond.

- Hits, losses, and energy deposition seen throughout.
- Machine protection.
- Particularly useful for machines with SC magnets.
 - Ion therapy beam lines.

Nozzle: Dose Formation

Shroud

Drifts

Collimator

Scatterer

- Demonstrate that properties of the delivered dose can be considered whilst modelling the accelerator.
- Single scattering nozzle to improve dose formation.
 - Unsuitable dose with beam shaping elements.
 - Low efficiency heavy collimation & losses.
- Good depth-dose uniformity, improvement in lateral dose profile.
 - High proximal dose from scatter-induced low energy tail.

Phantom

Collimator &

window

JAI Fest - 10th December 2021

W. Shields

Other capabilities

- Beam profiling after the energy degrader.
- Hits and energy deposition in beam line elements.

- Variance reduction techniques: importance sampling.
- Neutron dose in a treatment room wall.
- Heavy beam line losses.

- Scoring maps: record integrated quantities.
- Treatment room ambient dose equivalent.
- Per-particle species.

Z (cm)

Vary gantry rotation angle: dose modulation.

The ProteusOne Model in BDSIM

- Combination of standard BDSIM geometry & external files (via pyg4ometry).
 - Cyclotron included for modelling losses & dose maps of cyclotron vault.
 - Final dipole converted from CAD model crucial to include fringes.
 - 3D magnetic field map attached to custom beamline element.

Extraction

line

Degrader and

collimator

S2C2

R. Tesse. et al, IPAC2019,

P1G

P2G

12.5 m

10

Divergence

Q1-2G

T1-2G

Experimental Validation

- Excellent agreement between experimental data and simulations.
- Simulated horizontal & vertical beam profile.
- Depth dose profile in water.
 - Range & distal fall-off.
- Total transmission efficiency.
 - Extraction beamline & degrader to isocentre.
 - Multiple ranges to cover all degrader materials.

W. Shields JAI Fest - 10th December 2021

Other Studies & Developments

- Ambient dose map for activation studies.
 - Ambient dose equivalent scored in the cyclotron vault, treatment room, and the maze.
- Beam transport & degrader losses for 28.65 cm range dose.
 - High cyclotron vault dose: degrader and collimators.
 - Smaller beam transport losses, air gap.
- <u>IPAC</u> paper on ULB-lead developments.
- DICOM files dose deposition scoring in reconstructed volumes.
- Step toward BDSIM involvement in validation of TPS treatment plans.

- Shielding activation studies.
 - BDSIM in conjunction with FISPACT-II.
- Development of 4D scoring (3D + energy) forms FISPACT input.
- Studies ongoing.

W. Shields JAI Fest - 10th December 2021

Proteus Plus Eyeline Optimisation

- IBA eye-treatment beamline, part of the Proteus Plus (P+) system.
 - Treatment of ocular tumours (70-105 MeV).
- Publication submitted (E. Gnacadja, ULB).
- Improve deliverable dose rate and depth-dose distal fall-off.
- Optimise energy selection system, optics & nozzle
 - Maintain clinical requirements.

- Options defined providing uniform depth-dose to variety of depths.
 - Maximum dose rates between 15.5 and 17.0 Gy/min.
- Beam stopper added to the nozzle
 - Factor of 3 improvement in deliverable dose.
 - Complete treatment session in under 60 seconds.

CCAP: Overview

CAP

- Centre for the Clinical Application of Particles (CCAP)
 - Multi-disciplinary collaboration of academia, national laboratories, industry, clinical institutes, and accelerator laboratories
- Design of a proposed facility for cutting edge radiobiology research - LhARA
 - Multi-stage facility capable of delivering proton and ion beams in FLASH doses

Imperial College Healthcare

- Biophysical understanding of interactions between protons and ions with tissue.
 - Radiobiology program in development.
- Conceptual design complete working towards technical design.

CCAP: LhARA

Conceptual design report (CDR) publication:

Aymar, G. et al, Frontiers in Physics, (8), September 2020, 567738

Full CDR Technical Note:

https://ccap.hep.ph.ic.ac.uk/trac/raw-attachment/wiki/Communication/Notes/CCAP-TN-01.pdf

W. Shields

JAI Fest - 10th December 2021

Stage 1 Performance Evaluation

- Good optical agreement with space charge tracking simulations (GPT).
 - Stage 1 simulated + stage 2 post FFA.
 - Average dose of 128 Gy/s FLASH capable.
- Bragg peak range simulated in the end station.
- Dose uniformity improved with octupole focusing and collimation.

GPT With Space Charge; σ_x ; N=1.0E+04

GPT With Space Charge; σ_{v} ; N=1.0E+04

0.014

0.012

0.008

-1.0

-10

12

14

16

Stage 2 Injection Line Performance

- Stage 2 FFA injection line modelled (<u>IPAC2021</u>)
- Semi-realistic beam from laser-target interaction simulation (H.T. Lau, IC).
 - Good BDSIM & GPT agreement without space charge.
- Emittance growth observed when modelling space charge.
 - Final dimensions do not match FFA requirements
 - GPT horizontal beam jumps are simulation artefacts

W. Shields

- Phase space aberrations observed, previously seen in stage 1 simulations.
 - Arises in stage 1 solenoids & persists in the injection line.
- Replaced solenoids with 3D Gabor lens EM field map (T. S. Dascalu, IC).
 - Minimal performance impact compared to solenoid optics.
 - Similar phase space observed unavoidable effect.
 - Potentially acceptable by FFA studies ongoing.

JAI Fest - 10th December 2021

Summary

- In-house model:
 - Showcase BDSIM's capabilities.
 - Well developed code, highly suited to modelling proton therapy accelerators.
 - Increasingly used in medical beam line research academia & industry.
 - Publication submission imminent.

- ULB & IBA:
 - Excellent agreement with experimental data.
 - Successful modelling of 2 of IBA's flagship proton therapy systems.
 - Ongoing studies & developments.
- LhARA:
 - Crucial contribution in LhARA's design performance evaluation.
 - Continued use in design evolution.

