# A beam position monitor for the AWAKE experiment based on Cherenkov diffraction radiation

Collette Pakuza

JAI Fest

Friday 10<sup>th</sup> December 2021









#### Contents

- 1. The AWAKE experiment
- 2. Motivation for the Cherenkov diffraction radiation (ChDR) beam position monitor (BPM)
- 3. Design considerations
- 4. Status and future tests

#### The AWAKE experiment

AWAKE: Advanced Proton Driven Plasma Wakefield Acceleration Experiment



#### The AWAKE experiment

Protons 48 nC, 250 ps sigma
Electrons 150 pC, 2.5 ps sigma
Laser 120 fs, 450 mJ
Rb vapour



#### Motivation for ChDR BPM

- Proton signal dominates below
   2 GHz
- Current system cannot measure electrons in presence of protons
- Exploit the different bunch lengths
- Operate at high frequency
- Very mechanically challenging for traditional electrostatic monitors



#### Motivation for ChDR BPM

- New technique based on Cherenkov diffraction radiation
- Polarization radiation produced when charged particle travels in close proximity to the surface of a dielectric target
  - Non-invasive measurement
  - Large emitted photon flux
  - Well-defined angular emission





V.A/m^2

## Design for AWAKE



- Limited space available
- ChDR buttons designed to be compatible with existing p-BPM body



#### Plan:

- 1. Convert one p-BPM to c-BPM
- Split signal of e-BPM to measure protons
- 3. Install additional c-BPM in drift space

#### Design for AWAKE

- Proton bunch not gaussian, spectrum extends to frequencies higher than expected
- Operating frequency in the range of 10s GHz means electron signal dominates
- 30 GHz chosen due to availability of waveguide (WG) components in house
- WR28 WG used with cutoff 21 GHz acting as high-pass filter
- Collaboration with TRIUMF for the front-end electronics

#### Schematic of entire ChDR BPM setup



## Design for AWAKE

#### Mechanical design:

- $\varnothing 6$  mm alumina dielectric radiator oriented at Cherenkov angle ( $\varepsilon_r = 9.9, \theta_{ch} = 71^\circ$ )
- In metallic flanged button
- Cut flush on beampipe side and extended at the exit for attachment of a matchedimpedance transition to an industry standard WR28 rectangular waveguide



#### WG transitions

- Transition designed to maximize power transfer at 30 GHz between dominant modes of the waveguides
- Based on quarter-wave impedance transformer
- Section introduced with intermediate value of dielectric constant





#### WG transitions

- Numerical analysis shows forward transmission coefficient for all modes below 40 GHz
- Length of intermediate section optimized to produce largest contribution of power from the fundamental mode of circular dielectric (TE11)
- S21<sup>2</sup> = 99% power transmission
   @ 30 GHz
- Contributions from all other modes in circular dielectric are suppressed

#### Mode number in brackets



#### Numerical simulations

# Full simulation with beam to investigate system behavior



R281A WR28 to 50  $\Omega$  coaxial adapter





Circular to rectangular waveguide transition

| Parameter                                           | Value                        |
|-----------------------------------------------------|------------------------------|
| Bunch sigma                                         | 2.5 ps                       |
| Bunch charge                                        | 150 pC                       |
| Radiator angle                                      | 71°                          |
| Radiator length                                     | 86.27 mm                     |
| Radiator dielectric constant (alumina 99.5% purity) | 9.9                          |
| Mesh                                                | 10 mesh cells per wavelength |
| Total number of mesh cells                          | 252 million                  |
| Average simulation time                             | Approx. 15 h                 |
| Beampipe diameter (AWAKE)                           | 60 mm                        |

#### Numerical simulations

2.5

7.5

5.0

10.0

Time/ns

12.5

15.0



Provides the expected signal output for different beam

filter

Promising signal level out



17.5

Transverse beam offset

from beampipe center

#### Numerical simulations

By taking the signal level at a given time for different beam offsets, provides **position** response curve



# Summary of BPM specifications for 150 pC, 2.5 ps $\sigma$ electron bunch

| Parameter       | Value            |
|-----------------|------------------|
| Position        | 5.86 %/mm        |
| sensitivity     |                  |
| Signal-to-noise | Approx. 60/70 dB |
| ratio           |                  |
| Resolution      | 34.6 μm (300 MHz |
|                 | BW BPF)          |

Useful system requirements for development of front-end electronics by TRIUMF

Status of BPM and future tests

- Alumina rods and fused quartz pieces should arrive in following weeks
- Allows for completion of manufacturing process of buttons and transitions
- Buttons to be tested in-vacuum at CLEAR once accelerator restarts in March 2022
- Installation of c-BPMs at AWAKE with TRIUMF electronics in Summer 2022



Flanged button compatible with pBPM body

ChDR buttons in existing pBPM body



# Thank you for your attention!

# Wish you all a Merry Christmas!

