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Chapter 1
Symmetries and Extended Symmetries

In classical field theory, if an action S admits continuous transformations leaving it
invariant then we have a conserved current d j = 0 and this famously [1] allows to
define a conserved charge
0= [ i
Zg-1

where X; | is a closed d — 1 dimensional manifold. In the quantum theory a con-
tinuous transformation leaving the action invariant may or may not be a symmetry,'
but assuming that it is, d j = 0 is promoted to an operator equation valid at separated
points in all correlation functions. Then from Q we can construct a unitary acting
on the Hilbert space of the theory

io *J
Ug=e Jrqzy 17

The operators Uy, obey a group multiplication law (the group may not be commuta-
tive) and the operators transform under the symmetry via & — Uy O ng, furnishing
linear representations on which the Uy, act faithfully. It is important that the Hilbert
space (with or without various defects) does not have to be in linear representations
of Uy, — only the local operators have to be. For instance, in QM, the operators Uy,
can be realized projectively. Another important fine print is that requiring that sym-
metries act faithfully on local operators is not essential. For instance, in TFT, there
are no local operators but we still discuss the action of symmetries on extended
operators.

A hallmark of the unitary Uy is that it depends (as an operator acting on the
Hilbert space) on X;_; only topologically — that is, it is independent of X;_; for
small deformations. This allows us to define the more general notion of a zero-form
symmetry, as any operator that depends topologically on X;_. This clearly allows
to discuss the Uy that correspond to discrete symmetries, even though we do not
have conserved currents for discrete symmetries. Such generalized symmetries do

! The ABJ anomaly is the quantum effect which violates a classically valid symmetry.
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not have to be unitary, or even invertible, matrices, in which case we refer to them
as non-invertible zero-form symmetries.

Another possible generalization of the concept of symmetry is to consider opera-
tors that depend topologically on a d — 2 dimensional surface, X;_,. Such operators
are called one-form symmetry. We will denote then by Uél). We will assume that
they are unitary. Then it is easy to see that they must form an Abelian group since

we can pass d — 2 dimensional surfaces past each other without intersection:
1 1 1 1
Uy (5 2)Us (Za2) = U (Ba-2) U (5 ) (M

above, Zd_2,21’172 are parallel space-like surfaces at different times, acting on the
same Hilbert space. In the same way as zero-form symmetry acts on local oper-
ators, the one-form symmetry acts on line operators by some linear action which
is obtained by wrapping the line operator L with X;_, or, equivalently, by writing
L— U&l) (Zg—2) L U;(l) (Z},_,) for X _, in the future of L and Z;_; in the past of L
such that they are transverse to L in the space directions.

The equation (1) should again not be interpreted as an action on the Hilbert space,
but rather as an action on the line operators L. This action provides Ward identities
for correlation functions of L. There could be various central extensions of (1) when
studied as an action on the Hilbert space but it is exact as the action on line operators
inside correlation functions. We can again insist that the one form symmetry U,g,l)
acts faithfully on the line operators of the theory.

In the same way that zero-form symmetry has been a useful tool in the study
of local operators, one form symmetry is an important concept in the study of line
operators.



Chapter 2
Examples

In this chapter we cover simple examples of QFTs with one form symmetry and
line operators charged under those one form symmetries. A very important concept
we will keep coming back to is that once a line operator is charged under one-
form symmetry, it cannot be a trivial line operator and in particular must have some
effect at long distances. This is easily proven by observing that we can wrap the
line with the one-form symmetry d — 2 dimensional surface which is arbitrarily far
away and yet this must yield a nontrivial result according to the representation of the
line operator under the one-form symmetry. (Since the one-form symmetry group is
Abelian, we can take all the line operators in one-dimensional representations and
hence they simply pick up phases according to their charge.) How the line defect
affects the physics at long distances varies between different phases of QFT.

2d U(1) Theory

S= /dzx (zeiFoz, + 297TF01> . )
We will quantize the theory on S! x R where the circle has radius R. Pick a gauge
Ao = 0 and then d; Fy; follows as a constraint — which is nothing but the statement
that the electric field is constant. We can parameterize the remaining variable as
Ay (x,t) = G(t), with G ~ G + %Z. The latter identification follows from a residual
large gauge transformations with parameter e’2 = ¢**/R for an arbitrary integer k.
This large gauge transformation is allowed since x and x + 27RZ are identified.
The model therefore reduces to quantum mechanics of G(r) which is not terribly
surprising given that the photon has no actual propagating polarizations in 2d. We
find the action and Hamiltonian

1 ., 6.
S=2zR [dt | —=G*+—G ) .
& / <2e2 oz )

1 2
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. . . . 2

The eigenfunctions are ¥,(G) with energies E, = %%(277:11 —0)2. Note

that the spectrum is invariant under 6 — 6 + 27. The expectation value of the elec-

tric field in this state is 0
Foln)=e*(n—=) .
(n|For|n) = e (n 2”>

These states describe configurations with spatially constant electric field and spa-
tially constant energy-density.>

Since d1Fy1 = 0 holds as a constraint and dyFp; = O follows as an equation of
motion, we see that the operator Fp) is topological in the sense that its correlation
functions are independent of space or time. We can therefore interpret

— eZm’nGR

T
Ua:ela(ETJrﬁ)

as a unitary corresponding to a U (1) one-form symmetry charge.

It describes the conservation of electric field which results from the absence of
dynamical charged particles. More generally, the electric one-form symmetry group
is the subgroup of the center of the gauge group which is not acting on any of the
dynamical matter fields. The line operators charged under the one-form symmetry
are the electric Wilson lines

Lq :Peiq.]'Aodt )

Repeating the quantization above in the presence of the Wilson line at x = 0 we
find (}281 Fy1 = q8(x) which means that Fy; (x > 0) — Fy; (x < 0) = €2q. This induces
therefore a jump by ¢ units in the electric field. Of course the spectrum is empty
on S' since the two ends cannot be identified any longer. But in infinite volume the
ground state of the theory with the Wilson line is well defined — the Wilson line
induces a jump by ¢ units among the lowest lying possible values of the electric
field.?

The jump in the electric field due to the Wilson line can be written algebraically
as

. K . K
ela(%+%) (x <0)Ly(x=0) = e L,(x= O)ela(%+%) (x>0),

and the phase e~"*¢ on the right hand side is interpreted as the action of the U(1)
one-form symmetry, endowing the Wilson line with charge ¢ under the one-form
U(1) symmetry. The Wilson line has a notable effect arbitrarily far from it — it
changes the value of the electric field in one side of space, consistently with it being
charged under one-form symmetry.*

3d U(1) Theory

2 Sometimes these states are called universes since they are Poincaré invariant.

3 Note that L does not increase the energy compared to the usual homogenous ground state for
6 = 7 — this is sometimes called de-confinement since it means that there is no cost in placing an
external particle of charge £1 at 6 = 7.

4 This is true also for L. at = 7, where the energy density does not change, but the electric field
does change.
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—1
3 2
S= /d X —46215 . 3)

Similarly to the 2d theory, there is a U(1) one form symmetry in this theory since
there are no dynamical charges. The current is a two-index operator Jyy = Fyy
which is conserved by virtue of the equations of motion. This current can be inte-
grated on one-dimensional curves, leading to a topological operator:

u
Z

where dEfL is a vector tangent to the curve. Since the one-form %F is closed, this
integral depends on X; topologically. As usual, exponentiating it leads to a unitary
operator. We can properly normalize this unitary such that if X; wraps the wordline
of a charged particle L(7) with charge ¢, L(y) = Pe'1r* then we find

Ua(Z1)L(y) = €9%L(y) , @)

i.e. the Wilson line of charge g carries charge ¢ under the U (1) one-form symmetry,
as in 2d. Note that in (4) we do not study an equal time commutator as in some of
the formulas before but a Euclidean configuration where X; wraps 7. This becomes
a statement about a commutator in Lorentzian signature.

There are several things to remark about this theory.

* Placing a Wilson line of charge ¢ at ¥ = 0 leads to electric field Fy; ~ ¢x; /x> and
electric potential Ag ~ gloga™'|x]|, with @ some UV cutoff scale. This famously
leads to a divergent energy for a single charged particle both in the UV and the
infrared. If we study the dipole configuration with the charges separated distance
D apart then the infrared divergence is removed and we find a logarithmic binding
energy signaling that the particles are very difficult to separate. However, strictly
speaking, the theory is still deconfined since such a logarithmic potential does
not lead to an area law, instead, the rectangular Wilson loop has expectation
value e~ 7180 where T is the extent in time and D the separation between the
charges. (This is valid for 7 > D.)

 The theory (3) has interesting local operators .#, charged under the U(1) zero-
form symmetry J, = ﬁsuva VP These are the monopole local operators (disor-
der operators), defined by removing a point from space-time and forcing the flux
through a small S? surrounding it to be ﬁ J F =2mn.

*  We can deform the action (3) by adding monopole operators as follows:

S=/d3x (;Fz—l—zn:a,,//ln(x)—&—c.c.) . %)

The one-form symmetry is preserved and remains U (1) since there are no dynam-
ical charged particles but the zero-form symmetry is broken by the monopole
operators. We can again study the effect of placing a single Wilson loop L, at
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X =0 and then a dipole with the Wilson loops distance D apart. The monopole
operators lead to dramatic effects on both questions.

To understand how the monopole terms change the dynamics of the theory it
is convenient to dualize the gauge field to a compact scalar ¢ of radius 27 via
5= Fyuy = €4vpdP ¢ with a standard kinetic term and potential V(@) = ¥, a,e™? +
c.c.. This potential generically gaps the ¢ excitation (i.e., in the dual language, the
photon becomes massive due to monopole proliferation!) and it leads to a confining,
approximately one-dimensional, string emanating from a probe charge and a simlar
string now connects a dipole. To see that, note that an electric probe is a source for
a monodromy of the ¢ field (i.e. a vortex) and due to the potential V (@), away from
the sources the field would prefer to be in the ground state almost everywhere, as
much as possible. The vortex therefore has to be the end point of a string where @
rapidly jumps. This leads to a linear energy in the length of space for an isolated
probe charge, and the string, which continues to infinity, ensures that the one form
symmetry charges are reproduced while for a dipole the energy is linear in D and
hence the rectangular Wilson loop behaves as e~ DT with a coefficient ¢ that is
identified with the tension of the string.

We have seen in this example two different realizations of the infrared behavior
of line operators charged under one-form symmetry: in one case there was a linearly
decaying, isotropic electric field and the theory is gapless, and in the second case,
the theory is gapped and we have electric field confined to a line and

continuing forever without decaying in magnitude, until it ends on an opposite
charge.

4d U(1) gauge field

As in our prevous examples, the free U(1) gauge theory has an electric one-form
symmetry. This one-form symmery charge is obtained by integrating xF over two-
dimensional surfaces (Gauss’ law). The Wilson line of a probe of charge g carries
charge ¢ under the electric one-form symmetry. Famously one find that this leads to
the electric potential

eq
Ao= 4mr
which is a scale invariant decay since both the left hand side and the ride hand
side have dimension 1. This would be one of our simplest examples of a conformal
line operator (in the bulk CFT which is the free photon theory). A noteworthy point
about the 4d U (1) guage field is that it has, in fact, U (1) x U (1) one-form symmetry,
where the second U(1) factor originates from the magnetic one-form symmetry,
whose charges are obtained by integrating F' over two-dimensional surfaces. This
is conserved due to the absence of dynamical magnetic charges. The charged line
operators are the "t Hooft lines, defined similarly to the disorder operators in our 2+1
dimensional U(1) gauge theory. These are again conformal line operators leading
to a scale invariant magnetic field B ~ 1/r%.

)

SU(N) gauge theory in 4d
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The action is given by

S/d4x( = F2+9F/\F> . ©)

48y 872

As in our 2d example, 0 is a 27 periodic parameter. Since the gluons are in the
adjoint representation of the gauge group one cannot hope for a Gauss law measur-
ing the precise representation of a source, however, the N-ality of the representation
(i.e. the number of boxes mod N) is conserved, hence, the theory has a Zy one-
form symmetry. The Wilson line in any representation which has a nonzero number
of boxes mod N is charged under Zy one-form symmetry. Therefore, it must have
some long distance effects. Famously, it is conjectured that the theory (6) is con-
fined and gapped.> A Wilson line charged under one-form symmetry must be the
end point of a two dimensional sheet of the confining string. More precisely, a Wil-
son line with charge kK mod N must be the end point of the two-dimensional sheet
of the confining k-string. The sheet can end either on another Wilson line with the
opposite charge, or it has to continue to infinity.

3 Though at @ = 7t (6) is most likely not gapped at finite volume due to the spontaneous breaking of
time reversal symmetry. Each of the corresponding vacua at infinite volume is most likely gapped.






Chapter 3
Line Operators in Conformal Theories

An interesting phase encountered above is that of a conformal line operator in the
free 4d U(1) gauge theory. Our aim in this chapter is to study conformal line opera-
tors in more detail. Our setup is a conformal field theory in d space-time dimensions
with a line operator extended in time and localized at X = 0. While our discussion
thus far emphasized one-form symmetry, there are many

conformal line operators that are uncharged under one- form symmetry and there
are also many conformal line

operators which are nontrivial in theories that have no one-form symmetry. This
is analogous to the situation with local operators, which can be non-trivial even if the
are not charged under any symmetry. Starting from the bulk so(d + 1, 1) conformal
symmetry, a conformal wilson line would preserve the maximal allowed subgroup
that leaves X = O invariant. The allowed transformations therefore consist of dila-
tions, translations in time, and out of the special conformal transofrmaitons,

Xt — b2

="
1—2b-x+b%2x2"°

we must only allow those with b =0 and hence, denoting W= B we have the
transformation (evaluated at X = 0)

/: t
1-Bt°

The three transformations we have found comprise an s/(2,R) subgroup which
at X = 0 acts as

X=0: t

g at+b

_ato d—be—1.
ct+d’ a ¢

11
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A conformal line operator in a CFT is any line operator that preserves this sub-
group. The theory in the presence of such a conformal line operator is called Defect
Conformal Field Theory (DCFT).

The main actors in DCFT are the bulk local operators &;(¥,t) and the defect local
operators %;(t). The defect operators %;(t) have scaling dimensions corresponding
to the Cartan of s/(2,IR), denoted by A”, to distinguish them from the bulk scaling
dimensions A.

For the trivial line defect, i.e. the unit line operator, the defect local operators are
just the restriction of bulk local operators to X = 0 but more generally, there could
be defect local operators which do not have anything to do with bulk local operators
(such defect local operators could be thought of as acting purely in the Hilbert space
of the impurity, in the Hamiltonian language).’

A very important gadget is the bulk-defect OPE, which allows to expand the bulk
operators at small X in terms of defect operators, schematically as follows (suppress-
ing all quantum numbers other than the scaling dimensions)

ox0) =Y — (1) %
T el

This expansion is useful at short distances, where high- dimension defect opera-
tors make a smaller contribution.

In the vacuum, the expectation values of the %; all vanish save for the unit op-
erator. The corresponding coefficients for the unit operator on the right hand side
of (7) are often denoted simply by a;. Those describe the one-point functions of
bulk operators in the vacuum with the defect L:

(Gi(F,1) = =5 - ()

This is one of the key signatures of a nontrivial conformal defect: it leads to nonzero
one-point functions with power laws exactly compatible with the bulk scaling di-
mensions.

Line operators in CFTs can be defined in many different ways (we will see some
later) and it is by no means guaranteed that they are conformal. It is reasonable to
expect, though that they generally flow to (possibly nontrivial) infrared DCFTs. In
condensed matter

language, as we get further away from the impurity, it may not be completely
screened but rather flow to a conformal impurity which affects order parameters

6 In addition, the transverse rotations in so(d — 1) leave ¥ = 0 invariant, but there are s/(2,R)
invariant line operators

which break this symmetry. So we will not require so(d — 1) invariance as part of our definition
of DCFT.
7 More generally, it is often helpful to think about the physics of line operators in a Hamiltonian
language, where the line operator is an impurity in space,

while the bulk is tuned to a second-order zero- temperature phase transition. This language
makes it

very clear that RG flows on impurities are very important.
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as in (8). It is an important question in condensed matter to understand the long
distance effects of some impurities and, likewise, in particle physics, it is a question
of obvious interest to understand the long distance limits of line operators.

RG flows on line operators can be triggered by relevant defect operators % with
AL < 1 simply by integrating such operators on the defect. Therefore one canonical
construction of nontrivial line operators is to begin with the trivial line defect, for
which the spectrum of defect operators is given by the bulk operators restricted
to X = 0, and integrate on a line any such bulk operator with A < 1. Many bulk
CFTs have operators with A < 1 and thus this gives a large family of potentially
interesting conformal line operators. The physical meaning of such line defects is
that we apply an external field (think magnetic field) localized in space. This is why
in the condensed matter literature such line defects are often referred to as “pinning
field defects.”

Of course, in general, for such constructions, it is hard to derive analytically
anything concrete about the infrared but we will now discuss two cases where one
can say a lot.

Mean Field Theory

Consider the free scalar field ¢ in 2 < d < 4 with a trivial line defect and deform
it by the operator ¢, which has dimension 0 < A(¢) < 1 for 2 < d < 4. We are
therefore now calculating in free field theory with the line operator

Pt i) , 9)

with ¥ a relevant coupling constant around the y = O trivial line defect (it is marginal
for d = 4 and relevant for 2 < d < 4).

While this is certainly the simplest possible bulk CFT and the simplest possible
line defect in this theory, unfortunately, it leads to a rather exotic infrared behavior
as we will see. The infrared will not be a DCFT, except for the case of d = 4.

We can include the line defect in the action in order to streamline the analysis as

follows: |
5= [atx(5@07 -5 )

The equation of motion leads to the solution

Y
¢NmT4' (10)

* For d = 4 this is precisely consistent with the rules for one-point functions in
DCFT (8) and y must be interpreted as an exactly marginal parameter, i.e. it does
not flow and different values of y define different DCFTs.

* For d < 4 the decay (10) is too slow. In fact, for d < 3, (10) is not even
decaying. This pathological behavior means that in the infrared, the defect (9)
affects the bulk more strongly than any conformal defect is allowed to. One can
think about it as a never-ending flow, which never reaches an infrared fixed point.
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Presumably, this pathological behavior does not occur in models without degen-
erate bulk vacua.?

Wilson-Fisher Fixed Points

To test the idea that the infrared is a healthy DCFT in models without bulk vacuum
degeneracy, we now

consider the pinning field defect in the O(N) Wilson- Fisher models. We will
indeed see that we arrive at a

healthy nontrivial infrared DCFT. In other words, an external localized magnetic
field is not screened in the WF critical points. Our bulk action is

s= ddx@(aq?)zm(az)z) |

To define the line defect, we pick an arbitrary direction % in RY and define the line
operator as
Peih-fdl¢(l) , (11)

and again, h flows to strong coupling in the infrared for 2 < d < 4 since 6 is
a relevant perturbation around the trivial line defect. The problem can be attacked
analytically in three domains: in an epsilon expansion in d = 4 — € dimensions, in
the large N expansion for any d, and presumably also around d = 2 for N = 1 and
N = 2.2 We can always rotate h so that only the component /! is nonzero. In the &
expansion, one finds the following fixed point:

4N?+45N +170
R=N4+8+e——————4+0(£?) .
ENES e e O
And scaling dimension
5, 3N? 449N + 194

A =1+e—¢ +0(e%) .

2(N +8)?

while the operator ¢,; has AL((])# 1) = 1 from symmetry. Also the one-point func-
tion of the order parameter can be determined as

N+38 8(N+8)210g4+1\72—31\/—22
4 8(N+8)

aé = —1—0(82) )

8 Another interesting special case is d = 3 where the one-point function is a logarithm — this can
be connected with a certain anomaly in coupling space.

9 If the properties of the bulk CFT are continued in d, then at d = 2 for N = 1 one finds the Ising
model in which (11) flows to a fusion of two Dirichlet boundary conditions and hence everything
is known about it exactly. For N = 2 one finds a line defect at some special point (that can be
determined) on the ¢ = 1 conformal manifold. Either way, while the d — 2 limit is known, it is less
clear if it can serve as the starting point of an expansion.
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In the large N limit and d = 3 one finds again AX(¢,.1) = 1 and AL(¢) =
1.542... and aé =0.55813N. These are all roughly consistent and lead one to suspect
that for any N in d = 3 there is an infrared stable DCFT with AL(¢) ~ 1.540.1.
Some more complicated line defects exist in the O(N) models as well. They involve
some quantum mechanical degrees of freedom coupling to the order parameter in
the bulk. Of course, needless to say, it is not known what is the space of conformal
line defects in these models.

Wilson Lines in Gauge Theories

We have seen that in the free U (1) gauge theory in 4d the Wilson and "t Hooft lines
provide some of the simplest examples of conformal line defects. In preparation for
analyzing Wilson and 't Hooft lines in more complicated, interacting gauge theories,
we now study Wilson lines in QED with propagating matter fields. Of course, QED
with propagating matter fields in 4d is not a conformal theory (it is always infrared
free) so the formalism of DCFT is not entirely appropriate. However, we will take a
certain weak coupling limit where the beta function of QED will become negligible
and the formalism of line defects in CFTs is valid.
We will discuss QED in 4d with a massless boson of charge 1 with action

S/d4x(4_eéF2+|D¢2+7L|(b|4>+q/th0()?O,t), (12)

The Wilson line Ped) 440 can be viewed as describing a heavy nucleus of charge g.
To reach a situation where the beta function of the bulk couplings e, A is negligible
and we can think about this setup as a line defect in a conformal theory, we take a
scaling limit

=0, A—0, g—o, AJe*=fixed, e*q= fixed. (13)

Physically this means that we can think about nuclei with large charge with a suffi-
ciently small bulk coupling in the framework of line defects in a bulk CFT.
To see that the scaling limit (13) is useful we can rewrite the action as

1 —1 A .
S = = [/d“x <4F2+ DO + e2|¢4) +e2q/th0(x:0,r)} , (14)

where we have rescaled ¢ — ¢ /e compared to (12). We do not change the notation
for ¢ not to clutter the formulas. We can identify 7 ~ e and solve the model exactly
in A /e? = fixed and e>q = fixed, as promised. To leading order in our scaling limit
there is no beta function for the bulk coupling A /e? and thus we can think of the
bulk as a CFT.

To initiate an expansion in the scaling limit we must pick a saddle point and
expand about it in fluctuations. The obvious saddle point is

62
Ao=-—=, ¢=0. (15)
%]
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This describes the anticipated response to a charge g probe: a standard Coulomb
electric field. This could be the end of the story and we would have ended up with
a conformal defect for every g. We could measure the scaling dimensions of de-
fect operators from the fluctuations of ¢ and A. Since A appears only linearly and
quadratically in the action, the fluctuations of A are insensitive to the defect at lead-
ing order and hence the operator dimensions in the bulk and defect coincide. The
fluctuations of ¢ on the other hand are sensitive to the defect. The fluctuations of
¢ with angular momentum ¢ are allowed to have the following power-law behavior
near the defect:

0~ ap(t)r 24 By(e) 2

with v, = \/% +L(0+1) — g*q>.

The modes «, 3, by our bulk-defect OPE, correspond to operators of dimension
AL(ay) =1/2— vy and A(By) = 1/2 + v,. It makes sense to think about oy as a
defect operator only for 0 < v, < 1/2. From the s-wave modes, we see that

2 1
84q< 5
must be fulfilled, otherwise, all s-wave mode operators have complex scaling di-
mensions. Therefore we can already say that, unlike the pure U (1) gauge theory, the
question of which Wilson lines correspond to conformal line defects is not trivial.

It is useful to imagine that the Wilson line (i.e. our probe nucleus of charge g)
has some UV cutoff, i.e. a radius 7y. The ¢ fluctuations have to be consistent with
the choice of certain boundary conditions at . This, in general, forces us to remove
one linear combination of oy, ;. The most general boundary condition is

ap(t) = cord” Be(t)

with some coefficient c¢,.

The two natural choices ¢ = 0 (corresponding to imposing & = 0) and ¢ = oo (cor-
responding to imposing 8 = 0) are conformal boundary conditions since no explicit
powers of the cutoff ¢ appear. These two correspond to two distinct conformal line
defects.

* Since g%q < %, for £ > 0, only the choice & = 0 makes sense. Then we have
a defect operator of dimension A(fB¢) = 1/2+ vy > 1/2++/2 for £ > 0 which
is an ordinary irrelevant operator (to make gauge invariant operators, bilinear
operators must be considered). To be more precise, if the theory is deformed
by this irrelevant operator, then the boundary condition will be with some finite
nonzero ¢, but the statement is that one never reaches a sensible UV fixed point
with ¢y~ = co. In other words, it makes sense to do this only with a cutoff.

 For ¢ = 0 the choices ¢ = 0 and ¢ = o both make sense for any g’q < %, for
£ > 0, and they both correspond to a sensible UV complete DCFT. The choice
¢ = 0 describes an infrared stable fixed point with an operator of dimension
AL(By) = 1/2+ v, (again, we need to consider bilinears to make gauge invariant
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combinations) while the choice ¢ = o corresponds to an infrared unstable DCFT
with AL(By) = 1/2 — v, from which we can make a gauge invariant relevant bi-
linear BB which describes this RG flow between the UV DCFT with 8 = 0 and
the IR DCFT with o = 0.

In some sense it is fair to say that there is something misleading about the usual
formula for the Wilson line Pe’?/ 440 _In this presentation of the Wilson line, there
are no free parameters that can flow (since g € Z is quantized). However, there is a
parameter which must be tuned to a fix point, which is the coefficient of the operator
u[dtB’B = uré’zv [dt¢T¢. We can therefore write a more precise version of the
Wilson loop as

Ppeld | dtAotig [di9T (16)

Unlike g, the coupling g can flow and our analysis above shows that it has the fol-
lowing properties:

s For g2q > 1/2 no fixed points exist at finite g and instead B > 0 and g flows to
+ For g?q = 1/2 one fixed point with a marginal operator exists.
+ For g?q < 1/2 two fixed-points — one infrared stable and one unstable exist.

The fate of the flow g — —oo can be analyzed quite explicitly and the main con-
clusion that a new saddle point appears, replacing (15). That saddle point leads to a
trivial, completely screened line defect at long distances. Therefore for g>g > 1/2
there are no nontrivial conformal Wilson lines.

This analysis does not complete the understanding of the phases of Wilson lines
in QEDy. The infrared unstable fixed point obeys, as we saw, AL(¢) = 1/2 — v for
the s-wave mode. Therefore, as we decrease g2¢, more and more operators become
relevant at the unstable fixed point. While we know that the operator ¢T¢ should
trigger a flow to the stable fixed point, when |¢|* becomes relevant the end-point
is not obvious and it may or may not be the infrared stable Wilson line. Another
remark is that the discussion above of Wilson lines in QEDy carries over to non-
Abelian conformal gauge theories such as .4#" =4 SYM theory. SO(6)g invariant
Wilson lines in that theory will only lead to healthy DCFTs for small enough rep-
resentations and the number of such representations decreases as the coupling is
increased. Presumably there are no Wilson lines at strong coupling, other than the
ones protected by one-form symmetry, which we argued cannot disappear.
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