Mapping the boundaries of the seniority regime and collective motion: Coulomb excitation studies of $N=122$ isotones 206Po and 208Rn

T. Grahn
University of Jyväskylä
Helsinki Institute of Physics
INTC meeting 4.11.2010
Outline

- Physics background
- Proposed experiment
- Beamtime request
$N=122$ isotones in the trans-Pb region

\[\pi 1h_{9/2} \rightarrow \sqrt{2}f_{5/2} \]

208Rn → 206Po
$N=122$ isotones in the trans-Pb region

- Around the $Z=82$ and $N=126$ shell closures level patterns resembling seniority $\nu=2$ structure have been observed.
- Relative high-j proton single-particle orbital ($j=9/2$) dominate the structure - seniority ν can be regarded as a good quantum number.
- In the trans-Pb nuclei with $120 \leq N \leq 128$ the neutrons occupy high n, low ℓ orbitals and therefore they should have weaker interactions with the $1h_{9/2}$ protons. This implies that the seniority can be preserved.
In almost all even-even nuclei, $B(E2)$ values connecting the lowest yrast states increase both with increasing valence nucleon number and spin.

The $B(E2)$ values exhibit a parabolic trend across a major shell with higher spin $B(E2)$ values scaling with $B(E2;2^+\rightarrow0^+)$. In seniority scheme, $\Delta\nu=2$ transitions are parabolic maximising at mid-j shell. Transitions with $\Delta\nu=0$, however, minimise their $B(E2)$ values at mid-j shell. – A completely contrasting result to that of collective motion.
$B(E2)$ values in the seniority scheme

$2^+ \rightarrow 0^+, \Delta\nu=2$

$8^+ \rightarrow 6^+, \Delta\nu=0$

$f = n/(2j+1)$
$N=122$ isotones in the trans-Pb region

Level-energy systematics
$N=122$ isotones in the trans-Pb region

$B(E2)$ values

![Diagram showing $B(E2)$ values for isotones in the trans-Pb region with specific transitions marked for 206Po and 208Rn.](image)
$N=122$ isotones in the trans-Pb region

$B(E2)$ values

Open questions:

- The microscopic structure of the proposed $\Delta \nu=2\ 2^+$ states.
 - Seniority scheme predicts parabolic behaviour of the $B(E2)$ values across the $\pi h_{9/2}$ shell.
 - Neutron states?

- The proton-neutron interaction in this region should not be strong due to the large Δn and $\Delta \ell$ between the available proton and neutron orbitals.
 - Different trend for the $B(E2)$ values across the $\pi h_{9/2}$ shell expected (flat as the p-n interaction weak).
Proposed experiments

- Objectives: to measure the $B(E2;0^+\rightarrow 2^+)$ values in the $N=122$ isotones ^{206}Po and ^{208}Rn through Coulomb excitation at ISOLDE.

- Post-accelerated beams of ^{206}Po and ^{208}Rn (3 MeV/u) will be Coulomb excited in the ^{116}Cd target at MINIBALL target position. De-exciting γ rays will be detected with the MINIBALL γ-ray spectrometer in coincidence with outgoing particles detected in MINIBALL CD.
Proposed experiments

2.9 MeV/u 208Rn beam on 2 mg/cm2 116Cd target
Proposed experiments

Kinematics of 224Ra on 112Cd

L. P. Gaffney, IS465
Production and purity of the 206Po and 208Rn beams

- Rn as noble gas can be purified using the cooled transfer line (c.f. experiment IS465).
- Possible isobaric contaminants in the 206Po beam can be suppressed by using the RILIS laser ion source (c.f. experiment IS479).
- Composition of the beams will be monitored online.

Conclusion: Based on the observations in the earlier experiments, *no experimental difficulties* arising from the beam impurities are foreseen.
Count rate estimates and beam time request

- ISOLDE primary yields: 206Po $5 \cdot 10^6 \, \mu C^{-1}$ and 208Rn $2.1 \cdot 10^8 \, \mu C^{-1}$.

- Assume: 1% post-acceleration efficiency, 7% efficiency of MINIBALL, 2 mg/cm2 target thickness, the CD angular coverage of $16^\circ \leq \theta \leq 53^\circ$ and \(\langle 0^+|\hat{O}(E2)|2^+ \rangle = 0.407 \, \text{eb} \) (204Pb).

- Conservative estimate (2$^+$ to 0$^+$ transitions): 200 γ rays in 3 shifts (206Po), 700 γ rays in an hour (208Rn).

- In total **6 shifts** of beam time is requested.
Collaboration

CERN-ISOLDE (T.E. Cocolios, J. Pakarinen, D. Voulot, F. Wenander)
STFC Daresbury Laboratory (M. Labiche, J. Simpson)
TU Darmstadt (Th. Kröll, M. Scheck)
University of Jyväskylä/Helsinki Institute of Physics (T. Grahn, R. Julin, P. Nieminen, P. Rahkila)
KU Leuven (N. Bree, I. G. Darby, J. Diriken, M. Huyse, E. Rapisarda, P. Van Duppen)
University of Liverpool (P. A. Butler, L. P. Gaffney, D. O’Donnell, R. D. Page)
University of York (D. G. Jenkins)