The optical cavity for the Gamma Factory Proof of Principle Experiment

Aurélien MARTENS (IJCLab Orsay) on behalf of

The Gamma Factory study group

A. Abramov¹, S.E. Alden¹, R. Alemany Fernandez², P.S. Antsiferov³, A. Apyan⁴, D. Balabanski²⁴, H. Bartosik², J. Bierengun⁸, F.G. Bessenov⁶, N. Biancacci², J. Bierend¹, A. Bogacz⁴, A. Bosco³, R. Bruez², D. Budker^{3,19}, P. Constantin²⁴, K. Cassou¹¹, F. Cassell¹¹, ², I. Chaikovska¹¹, C. Caratolo¹³, P. Caedrowski², A. Derevianko¹⁴, K. Dupraz¹¹, Y. Duthel¹², K. Dzierzigar⁷, V. Fedossev², V. Flambaum²⁵, S. Fritzsche¹⁷, N. Fuster Martinez², S.M. Gibson¹, B. Goddard², M. Geohteyn²⁰, A. Goezawski^{15,2}, R. Hajima²⁶, T. Hayakawa²⁶, S. Hirlander², J. Jin¹³, J.M. Jowett², R. Kersevan², M. Kowalska², M.W. Krasny^{16,2}, F. Kroeger¹⁷, D. Kuchler², M. Lamoor², T. Lefevre², D. Manghunk²⁸, B. Marsh², A. Martens¹², S. Miyamoto³¹ J. Molson², D. Nichita¹⁴, D. Nutarell¹¹¹, J.J. Nevay¹, V. Pascaluta²⁸, J. Ferliko¹⁵, V. Ferliko¹⁵, W. Patczek⁷, S. Redelli², Y. Peinaud¹¹, S. Pustelly⁷, S. Rochester¹⁹, M. Safronova^{25,30}, D. Samoilenko¹⁷, M. Sapinski²⁰, M. Schaumann², R. Scrivens², L. Serafini¹², V. Peinaud¹¹, S. Sustelly⁷, S. Rochester¹⁹, M. Soreq¹², T. Soehlker¹⁷, A. Suznhykov²¹, I. Tolstikhina⁶, F. Velotti², A.V. Volotka¹⁷, G. Weber¹⁷, W. Weiqiang²² D. Winters²⁰, Y.K. Wu²², C. Yin-Vallgren², M. Zanetti^{21,13}, F. Zimmermann², M.S. Zolotorev²⁴ and F. Zomer¹¹

88 people from 34 institutes from 15 countries

Royal Bioloway University of London Egham, Sorvey, TW20 GEX, United Kingdom ² CERN, Generol, Switzerland

- ² Institute of Spectroacopy, Russian Academy of Sciences, Troinst, Moscow Region, Russia ⁴ A.I. Alikhunyan National Science Laboratory, Strevan, Armenia
- ⁸ School of Physics, University of New South Wales, Sydney NSW 2052, Australia
- ⁴ P.N. Lebedry Physical Institute, Russian Academy of Sciences, Mascow, Russia ⁷ Jagiellonian University, Krolute, Poland
- * Center for Advanced Studies of Accelerators, Jefferson Lab, USA
- ¹⁰ Melmholty Institute, Johannes Gatenberg University, Maing, Germany
- 39 Department of Physics, University of California, Berkeley, CA 94720-7308, USA
- ¹¹ LAL, Univ. Paris-Sud, CNRMN2PJ, Université Paris-Suclay, Orany, France ¹² Department of Physics, DIFN–Milan and University of Milan, Milan, Italy
- 12 Department of Physics, DO 12 INFN-Padan, Padan, Italy
- ¹⁴ University of Nevada, Bane, Nevada 89557, USA ¹⁴ University of Nevada, Renz, Nevada 89557, USA
- 11 University of Malta, Malta
- 10 LPNHE, University Paris Sorbonne, CNRS-JN2PJ, Paris, France
- 17 HJ Jenu, 10Q FSU Jene and GSI Darmetadi. Germany
- 18 Budher Institute of Nucleur Physics, Nevesibirsk, Russia
- 19 Rochester Scientific, LLC, El Cerrito, CA 94530, USA
- ²⁰ GSI Helmholtzzentrum /Gr Schwertunenforschung, 64291 Darmatadt, Germany
- ²² Brounschweig University of Technology and Physikalisch-Technische Bundesanstalt, German
- 12 FEL Laboratory, Dale University, Durkan, USA
- 20 University of Pades, Pades, Italy
- 14 Center for Beam Physics, LBNL, Berkeley, USA
- ²⁵ University of New South Wales, Sydney, Australia
- ²⁰ Tokai Quantum Beam Science Centre, National Institutes for Quantum and Radiological Science and Technology, Duraki , Japan
- 27 Institute of Modern Physics, Chinese Academy of Sciences, Lanchow, China
- ²⁸ Institut für Kersphysik, Johannes Gatenberg: Universität, Maine, Germany
- ²⁹ Department of Physics and Astronomy, University of Delaware, Delaware, USA
- ¹⁰ Joint Quantum Institute, NIST and the University of Maryland, College Park, Maryland, USA
- ¹¹ Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Hyogo, Japan ¹⁰ Physics Department, Technice – Jonal Davidser of Technology, Hulls 1200003, Israel
- ²⁰ Physics Department, Jechnon Linari Dunnae of Sectionology, Huge J,00000, Deart ²⁰ University of Science and Technology, Mafei (Anhali, China
- 44 Extreme Light Infrastructure Nuclear Physics (ELI-NP), Horia Mulubei National Institute for R&D
- in Physics and Nuclear Engineering (IFIN-MH), 077123 Bucharest Magorele, Romania

The scheme

Interaction region location

room in the unused side tunnel, shielded from the SPS radiations

Collision scheme

Beams must be aligned, synchronized

Not specific to Gamma Factory scheme

Table 3: SPS PoP experiment parameters.

PSI beam	$^{208}\text{Pb}^{79+}$
m – ion mass	193.687 GeV/c ²
E – mean energy	18.652 TeV
$\gamma = E/mc^2$ - mean Lorentz relativistic factor	96.3
N – number ions per bunch	0.9×10^8
σ_E/E – RMS relative energy spread	2×10^{-4}
ϵ_n – normalised transverse emittance	$1.5\mathrm{mmmrad}$
σ_x – RMS transverse size	$1.047\mathrm{mm}$
σ_y – RMS transverse size	$0.83\mathrm{mm}$
$\sigma_{-} = RMS$ hunch length	6.3 cm
Laser	Infrared
λ – wavelength ($\hbar\omega$ – photon energy)	1034 nm (1.2 eV)
σ_{λ}/λ – RMS relative band spread	2×10^{-4}
U - single pulse energy at IP	$5 \mathrm{mJ}$
σ_L – RMS transverse intensity distribution at IP ($\sigma_L = w_L/2$)	$0.65\mathrm{mm}$
σ_t – RMS pulse duration	$2.8\mathrm{ps}$
θ_L – collision angle	2.6 deg
Atomic transition of ²⁰⁰ Pb ¹³⁺	$2s \rightarrow 2p_{1/2}$
$\hbar\omega'_0$ – resonance energy	230.81 eV
τ' – mean lifetime of spontaneous emission	76.6 ps
$\hbar\omega_1^{\max}$ – maximum emitted photon energy	44.473 keV

Laser parameters optimization

A muti-dimensional approach to optimize the laser beam parameters

Laser pulse duration/spectrum tunability is an asset

Optical system: design

A several mJ pulsed laser at 40 MHz is a natural candidate:

- Compatible with the atoms filling schemes
- Compatible with what one would need for (later) LHC operations
- State of the art technology: pulsed laser (freq. comb) + amplifier + resonant cavity

A 2-mirror (plano-concave) cavity is considered:

 \rightarrow simpler operation, delivers naturally beam sizes close to optimum

Three pilars of the optical system

 Fabry-Perot resonator to reach about 5mJ at 40MHz→ 200kW

 A high gain optical cavity

 A high power amplifier

 Image: A high finesse (selectivity)

 Small quantum defect

 Yb technology

 100W amplifiers are

 commercial systems

The oscillator

Fabry-Perot interferometric filter

Phase noise measurements

<u>Noise measurement</u>
Optical beating RF technique

Phase noise measurements

Noise measurement

Optical beating RF technique

The amplifier

Use Chirped Pulse Amplification; System robustness is critical.

Pulse duration could be tuned with temperature-controlled fibre Bragg Gratings (stretcher) \rightarrow needs R&D

Laser pulse duration/spectrum tunability is an asset

Robustness is critical

The optical cavity

Fabry-Perot resonator

Optical mirrors from LMA, see earlier presentation by Laurent

Input laser beam must be matched to the cavity:

- ➢ Temporal superposition 2L/C=F_{rep}
- Transverse mode matching

Resonate at different cavity lengths*

*for a non-degenerate cavity

High-order mode instability

Stable 200kW

Highly sensitive to cavity topology Rough understanding from simple simulations → HOM damping with additional D-cut mirrors in cavity

Conclusion/Prospects

Selection of oscillator provider Careful phase noise measurements

Decide on amplification techno Cost vs R&D and robustness

Investigate modal instabilities Max power in cavity

System robustness Extensive stress tests Remote operation of system