Laser operation experience at CERN

Valentin Fedosseev SY-STI-LP

2nd PBC technology mini workshop: lasers & optics 10 December 2021

Outline of the presentation

1. Mandate of SY-STI-LP section

2. Laser ion source RILIS at ISOLDE

3. Photoinjector laser systems

4. AWAKE laser system

5. Summary

Disclaimer

Only laser systems under responsibility of SY-STI-LP are covered in this presentation

Mandate

The Lasers and Photocathodes section is responsible for *laser installations and optical beamlines used to produce charged particle beams* in the CERN accelerators complex and research facilities

- + Support for laser applications in the AT sector, including safety aspects.
- + Training network (LISA)
- + Knowledge Transfer (@RILIS, @CLEAR)

ISOLDE in the CERN accelerator complex

The ISOLDE Laboratory

Focus on Exotic Beams at ISOLDE: A Laboratory Portrait

Guest Editors: Klaus Blaum and Maria Borge

Journal of Physics G: Nuclear and Particle Physics Focus issues 2017-2018

- > 80 active experiments
 - Nuclear physics
 - Nuclear astrophysics
 - Solid state physics
 - Life science

The ISOLDE Laboratory: target and experiment areas

- \geq 12 beam lines
- 10 fixed experimental setups
- > Temporary setups for travelling experiments
- Over 50 different physics experiments per year. \succ

Resonance Ionization Laser Ion Source: RILIS

RILIS ion beams

			Eler	nents	ioniz	ed w	ith RI	LIS									
1			loni	- otion	o ob c		o o t o d										2
	4			zalior	SCHE	ine i	esteu	luye	UI II.	Sa)		-	0	7	0	0	
Li	Be RILIS ionization feasible B C N O F										9 F	10 Ne					
11	12											13	14	15	16	17	18
Na	Mg											ΑΙ	Si	Ρ	S	CI	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Хе
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
87	88	89	104	105	106	107	108	109	110	111	112						
Fr	Ra	Ac	Rf	Ha	Sg	Ns	Hs	Mt									

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Ion beams of 48 elements have been produced at ISOLDE with RILIS

RILIS at ISOLDE facility

RILIS Laser Setup (simplified scheme)

RILIS laser setup

Diamond Raman lasers for RILIS

K. Chrysalidis et al, Opt. Lett. 44(16), 3924–3927 (2019)

D. Talan Echarri et al., Optics Express 28(6), 8589 (2020)

Diamond Raman lasers for RILIS

Narrowband:

To enable laser spectroscopy with a laser line width ~ 10x narrower than is currently possible with RILIS lasers

KT project "Singular light"

Stokes spectral squeezing via phonon resonant interaction in diamond

E. Granados et al., Request for grant of European patent submitted 18.12.2020 E. Granados et al., a paper submitted to Optica

MEDICIS Laser Ion Source Setup At CERN (MELISSA)

MEDical Isotopes Collected from ISOLDE – facility for production of medical isotopes for research in

radiopharmaceutical science

Long-lived radio-isotopes

- Produced in a cold target (at ISOLDE or elsewhere)
- Transported to the MEDICIS front-end
- Extracted by heating the target material
- lonized and mass-separated
- Collected on a substrate
- Shipped to medical research laboratories

Setup similar to RILIS, based on Ti:Sapphire lasers

Lepton beams at CERN

- Next generation of colliders ("Higgs factories") will likely use leptons instead of hadrons exclusively:
 - CLIC (multi-TeV electron-positron collisions)
 - FCC-ee/eh
- Accelerator R&D :
 - AWAKE: Proton-driven plasma wakefield acceleration experiment
 - CLEAR: CERN Linear Electron Accelerator for Research

▶ p (proton) ▶ ion ▶ neutrons ▶ p̄ (antiproton) ▶ electron →+→- proton/antiproton conversion

CLIC Test Facility (CTF3)

PHIN laser

- CLIC needs 140 us long train
 - Previous tests showed decay over the train.
 - Beam profile degrades in step with UV power level.
 - Stability requirement (0.25% rms) was not met.
 - Damage occurs in crystals when using full length train
- Aim of this study:
 - Identify damage levels, feasibility for CLIC
 - Test response to long trains with 1/3 of the repetition rate (500 MHz instead of 1.5 GHz)
 - Testbench for different crystals.
 - Operation in parallel to CALIFES laser.

		The second s			
		DRIVE b	MAIN beam		
		PHIN	CLIC	CALIFES	
	charge/bunch (nC)	2.3	8.4	0.6	
	gate (ns)	1200	140371	19.2	
\$	bunch spacing(ns)	0.666	1.992	0.666	
uo	bunch length (ps)	10	10	10	
ctr	Rf reprate (GHz)	1.5	0.5	1.5	
lee	number of bunches	1802	70467	32	
ш	machine reprate (Hz)	5	100	5	
	margine for the laser	1.5	2.9	1.5	
	charge stability	<0.25%	<0.1%	<3%	
	QE(%)	3	2	0.3	
	laser wavelegth (nm)	262	262	262	
2	energy/micropulse on cathode (nJ)	363	1988	947	
Ē	energy/micropulse laserroom (nJ)	544	5765	1420	
	energy/macrop. laserroom (uJ)	9.8E+02	4.1E+05	4.1E+01	
ase	mean power (kW)	0.8	2.9	2.1	
	average power at cathode wavelength(W)	0.005	41	2.E-04	
	micro/macropulse stability	1.30%	<0.1%	<3%	
	conversion efficiency	0.1	0.1	0.15	
	energy/macropulse in IR (mJ)	9.8	4062.2	0.3	
Laser in IR	energy/micropulse in IR (uJ)	5.4	57.6	9.5	
	mean power in IR (kW)	8.2	28.9	14.2	
	average power on second harmonic (W)	0.49	406	1.E-03	
	average power in final amplifier (W)	9	608	15	

PHIN laser in 2021

CERN Linear Accelerator for Research: <u>Clear</u>

- Multipurpose e- accelerator operating since 2017 and until 2025.
- "The primary focus for CLEAR is general accelerator R&D and component studies for existing and possible future accelerator applications."
 - High gradient accelerators
 - Plasma technology
 - Accelerator components for HL-LHC and AWAKE
 - Characterization of electronic components
 - Medical applications
 - THz beam generation
 - Others...

European Space Agency

CLEAR laser (original version)

CLEAR laser upgrade 2020-2021

E. Granados "Upgrade of the CLEAR diode-pumped Nd:YLF power amplifier", CERN OPEN 2020-001 (2020)

New photo-injector at CLEAR/CTF2

Ultrafast PHAROS laser from Light Conversion (Yb-doped fiber technology) Installed in CLEAR laser lab and tested

163300, pulse width 151 fs (Sech)

Delay (fs)

User input

Single-shot, 10 Hz...

Pulse

Picker

Wavelength	Pulse energy	RMS	Pk-Pk
1030 nm	2.21 mJ	0.043%	0.099%
515 nm	1.23 mJ	0.053%	0.38%
257 nm	415 uJ	0.11%	0.77%

- Designed to operate with both Cu or Cs2Te cathodes
- Variable pulse duration from < 300 fs up to > 5 ps
 - Requires multiple harmonic stages or UV stretcher.
- Synchronizable to RF (1.5 GHz) reference
- Expected maximum charge production:
 - Cu cathode : ~ **400 pC**
 - Cs₂Te : > 1 nC

Compressor

Transport line to the electron gun under construction

To Harmonic stages and photo-gun

Oscillator

77 MHz

SYNC

3 kHz

Regenerative

Amplifier

AWAKE experiment

- Proof-of-principle experiment: wakefield plasma acceleration using a proton bunch as a driver, a world-wide first.
- It demonstrated acceleration of a low-energy witness bunch of electrons from 15-20 MeV to several GeV over a short distance (~10 m) by creating a high acceleration gradient of several GV/m
- Our contribution:
 - IR beam delivery, diagnostics.
 - UV beam generation, delivery, and photocathode, diagnostics.
 - Experimental and laser support

Nature volume 561, pages 363–367(2018)

AWAKE laser

Amplitude Technology CENTAURUS 100 fs

Performance	Measured Value
Repetition Rate	10 Hz
Central Wavelength	780-785 nm
Spectral Bandwidth	24 nm
Pulse duration	120 fs
Output Energy (uncompressed)	663 mJ
Output Energy (after compression)	500 mJ
Secondary output (uncompressed)	3 mJ
Energy stability	1.02%
Beam pointing stability	4.2 µrad
Temporal intensity contrast	2•10-7
Polarization (linear)	250:1

AWAKE laser beams

Laser beam to plasma cell

- λ = 780 nm
- t pulse = 120 fs
- E = 450 mJ

Laser beam to streak camera ("time marker")

- $-\lambda = 780 \text{ nm}$
- t pulse = 120 fs,
- E≈0.01 mJ

Laser beam to electron gun

- λ = 260 nm
- t pulse = 0.3-10 ps
- E = 100-300 nJ

IR laser beam to plasma

Proton-laser beam merging 22 m upstream of the plasma cell

AWAKE photo-injector

 The experiment will use two plasmas, electron bunch seeding for the SM process, on-axis external injection of an electron bunch and electron bunch parameters to reach plasma blowout, beam loading and beam matching.

- Distance from laser lab to laser compressors ~ 115 m
- Distance from laser compressor to plasma cell entrance ~ 30 m (same as Run 1)

- Stretched pulse
- Compressed pulse
- --- Mirror leak

- Relay imaging systems require only low-level primary vacuum, blue mirrors are "in air"
 - Focusing on plasma cell attained by mismatching beam expanders
 - Content of diagnostics sets still to be determined, location of safety devices, etc...

Run 2 study: proton beam impact on laser mirror

Energy deposition model

- Single SPS bunch of 3E11 protons at 400 GeV
- Mirror placed at two locations from the laser cell:
 - 3 m (σ ~0.9 mm) and 20 m (σ ~1.6 mm)
- The mirror is modeled as a 100 nm silver layer on a 5 (12) mm silica substrate

Profile along the silver layer

Assembly of 2 mirrors placed in the proton beam at 10m downstream the plasma cell Mirror 1 – dielectric R>99.5%

Number of bunches on mirrors:8015Total number of protons:1.2 x 1015Average bunch population:1.5 x 1011

No visible damage of the reflecting coatings ! 32

Summary

- Multiple users facility at CERN profit from charged particle beams produced using laser technology
 - RILIS systems at ISOLDE and MEDICIS are essential for isobaric purity of delivered radioactive ion beams
 - Electron sources of existing and future lepton accelerator requite robust photocathodes and high-quality laser beams
 - Plasma created by high-intensity laser beams enables conditions for selfmodulation of high energy proton bunches and wake-field acceleration
- Laser development directions are defined by expanding requirements for new and higher quality particle beams

Acknowledgements

Eric Chevallay Eduardo Granados Bruce Marsh Katerina Chrysalidis – FELL Isabelle Fontaine – FELL Reinhard Heinke – FELL Miguel Martinez Calderon – FELL Bianca Reich - FELL Daniel Talan Echarri – DOCT Georgios Stoikos – TECH Cyril Bernerd – VISC Vadim Gadelshin - VISC

Former members of the LP section

Ralitsa Mancheva Shane Wilkins Camilo Granados Matthieu Veinhard Christoph Seifert Tom Day Goodacre Ralf Rossel Sebastian Rothe Daniel Fink Harsha Panuganti Anna-Maria Bachmann Florence Friebel Christoph Hessler Mikhail Martyanov Piotr Gach Irene Martini Marta Csatari Massimo Petrarca Nathalie Lebas

Thank you for your attention!

