

Optical calibration of particle detectors

Using light to "see" particles

G. Cantatore - University and INFN Trieste - PBC Tech WG Optics Workshop - CERN, 10/12/21

• VBI

• Laser calibration in Muon G-2

• Optical techniques in the MUonE project

• What we are learning

Introduction

- **• Using light to "see" particles**
	- **• Optics is becoming a key tool for the task of meeting the ever more stringent requirements of particle detectors**
	- **• High precision measurements are made possible by implementing advanced optical techniques and integrating them in detector systems**
- **• Main areas of interest**
	- **• energy calibration**
	- **• alignment**
	- **• stability monitoring**

[•] …

Laser calibration in Muon G-2

INFN

<https://muon-g-2.fnal.gov>

Why use a storage ring?

- Parity violation in muon decay \rightarrow high energy decay positrons are preferentially emitted in the muon spin direction
- Measure the energy spectrum with detectors around the inside of the ring

5 4/7/2021 Chris Polly | Muon g-2 Announcement

The laser calibration system aser calibratio i Our plan of data taking and hardware changes addresses the largest systematic uncertainties

• The laser calibration system is a key element of Muon g-2, it was practically absent in the previous **Brookhaven Lab experiment** $\bm s$ ich is a ney cienient of ividori $\bm y$ - $\bm z$, it was practically absets, we analy data sets, when availability of more tools to diagnose such mysteries showld they arise. Table \mathcal{L} summarizes showld they arise. Table \mathcal{L} \mathbf{t}

BNL (2001) Muon g-2 at FNAL

Table 5.2: The largest systematic uncertainties for the final E821 ω_a analysis and proposed upgrade actions and projected future uncertainties for data analyzed using the *T* method. The relevant Chapters and Sections are given where specific topics are discussed in detail.

Muon q-2 "TDR"

• Simple working principles:

- a "source monitor" employing a ²⁴¹Am source as reference gives the absolute calibration of laser pulse amplitudes
- laser pulses are distributed to the calorimeter crystals through a fibre optic network monitored by "local monitor" uted to the calorimeter crystals through a libre optic network mo
- · laser pulses illuminate the calorimeter crystals through a "diffuser", and several pulse sequences are used in order to obtain the gain corrections to be applied to the SiPMs

Credits for the laser system Italian collaboration in Muon G-2: INFN Frascati, Napoli, Pisa, Roma 2, Trieste-Udine and INO Pisa

Main requirements and solutions

- **• Main requirements for the laser system**
	- **• monitoring and calibration of the calorimeters at the 0,04% level on the time scale of a single muon "fill" (700 μs)**
	- **• detector gain correction and monitoring at a level <10-3 over several hours of running**
	- **• synchronization of calorimeters, integral beam counter ("T0 counter") and beam position monitors ("Fiber Harps")**
- **• Adopted solutions**
	- **• laser pulses sent simultaneously to all 54x24=1296 calorimeter crystals**
	- **• pulses distributed over a multimode optical fiber network**
	- **• continuous monitoring of both pulses and fiber network**
	- **• custom timing and control electronics**

Subsystems

• Laser heads

• generate triggerable 405 nm laser light pulses

ľ Muon g-2

- **• Diffusers**
	- **• uniformly distribute light intensity on every single calorimeter crystal**
- **• Source Monitor (SM)**
	- **• corrects amplitude fluctuations by comparing the amplitude of the laser pulses with a reference signal generated by a radioactive source**
- **• Local Monitor (LM)**
	- **• monitors the stability of the light distribution system using a reference from the SM**
- **• Custom electronics**
	- **• interfaces with the beam triggers to control laser pulse generation**
	- **• acquires and stores locally the laser system signals**

$\frac{\partial \mathcal{L}}{\partial \mathcal{L}}$ **INFN THE COPTICAL bench and "Laser Hut" SEGLISTIZE CONNECTED POWER AND ALL CRYSTAL TO DELICATE A SECT** Istituto Nazionale di Fisica Nucl

G. Cantatore - PBC Tech WG Optics Workshop - CERN, 10/12/21 G requirements, the chosen setup is the chosen setup is the following (see scheme in figure 1, and picture 1, and picture 1

Gain correction example *G*SiPM(*i*) = h*R*SiPM(*i*)isubrun *^R*SiPM(0) · *^R*SM(0) h*R*SM(*i*)isubrun $\mathsf{P}^{\mathsf{1}\mathsf{2}}$ $\sum_{n=1}^{\infty}$ and aggregate extension to a $\frac{1}{n}$ and all and aect the amplification. $\mathfrak g$ side signals between the intensity of the transmission of $\mathfrak g$ at dierent levels. Figure 21a shows the response of the response of the calorimeters' \blacksquare

- **• The main cause of gain drifts over long time scales (~seconds) is temperature effects** where *R*SiPM is the response amplitude of the SiPM to the laser, *R*SM is the response amplitude of the $\overline{\mathsf{m}}$ and $\overline{\mathsf{w}}$ are bracket value of $\overline{\mathsf{w}}$ and $\overline{\mathsf{w}}$ are sub-run (about $\overline{\mathsf{w}}$ The main cause of gain drift
- **• Correction factor:**

2019 JINST 14 P11025 $\frac{1}{5}$ 1.04 $\frac{1}{5}$ 1.04 $\frac{1}{5}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ 1.04 $\frac{1}{2}$ 1.04 $\frac{1}{2}$ Correction factors $\frac{5}{80}$
 $\frac{1}{80}$ $\frac{18}{10}$ 1.02 1.02 σ and the stable σ in Ξ is the cool of the run to Ξ is stable on the long term of the run to Ξ is stable on the run to Ξ is the 0.96 0.94 a b 0.92 0.92 ياو.0 0.9님 20 50 60 50 60 $time [h]$ $time [h]$ 1.002

1.002

1.003

1.002

1.003

2.0.99

2.0. 1.001 SiPM Laser Data $1.0008E$ **SM Laser Data** 1.0006 1.0004 $\mathsf{Ratio} \qquad \frac{\mathsf{E}}{\mathsf{s}}|_{1.0002}$ $= + + + + + - - + + + - - - - + + + - - + - - -$ SiPM energies corrected with G_{SiPM} SM energies = 5 s $-10-4$ 0.9998 Raw laser laser 0.99 $0.9996E$ 0.988 ratio of the $0.9994E$ d) $\mathsf{C}\,\mathsf{l}$ 0.986 0.9992 0.9996 0.984 10 $\overline{20}$ 30 50 $\overline{60}$ $\overline{60}$ 40 10 $\overline{20}$ 30 40 50 time [hours] time [hours] $$

MUonE Project

- **• Direct determination of the hadronic contibution to the muon gyromagnetic anomaly**
	- **• critical for the theoretical interpretation of the recent "Muon G-2" result**
	- **• high precision measurement of the scattering angle in µ-e- elastic scattering**
- **• Main characteristics of the apparatus**
	- **• muon beam at the CERN North Area**
	- **• chain of 40 "tracking stations", each equipped with a fixed target and three Si tracking planes, ending with an ECAL**
- **• Critical points**
	- **• …**
- **•** longitudinal alignment between tracking planes inside a station must be kept stable within 10 microns 5 6

Tracking station prototype

#6 Patch Panels

nolograph Beryllium target \blacksquare HAM - Holographic Alignment Monitor

• Solution to the longitudinal alignment stability requirements

- build the tracker support structure ("frame") in Invar and stabilize temperature inside a protective cover **1990**
- monitor the stability by detecting in "real time" possible relative movements between tracking planes
- **• optical technique of choice: holographic interferometry**
- **• HAM Working principle**
	- Two conerent light beams are obtained by splitting a single laser source, one is the Treference Deam, while
to be monitored ("object" beam"). Splitting and transport is done via optical fbers ⇒ novelty in holography **• Two coherent light beams are obtained by splitting a single laser source, one is the "reference" beam, while the other reflects off the object**
	- ere (**reconstructed with a Fourier transform procedure** 1
ter 945 **• The reference and object beams superimpose on the surface of a CMOS image sensor generating a raw holographic image, which is then**
	- Interference takes places between two raw holographic images of the object taken at different times. If the object moves with respect to the **light source between the two images, fringes will appear in the reconstructed holographic image of the superposition of the two raw individual images.**

Holography WG in MUonE: A. Arena and M. Karuza (Univ. of Rijeka and INFN Trieste), G. Cantatore (Univ. and INFN Trieste)

 \sim equidistant \sim

MUonE tracking frame

Station Shaded ISO View

Fiber optic distribution

HAM test setup in Trieste

fiber coupled 532 nm laser

1x12 fiber splitter

Test setup

HAM tests with a dummy CMS tracking module **CINFN**

G. Cantatore - PBC Tech WG Optics Workshop - CERN, 10/12/21

Preliminary calibration tests

- **• Controlled tilt movement of the CMS Si tracking module**
	- **• calibrated stepping motor actuator with spring loaded counterforce**
	- **• labview software for motor control, raw image acquisition and reconstruction**
- **• Images are taken at intervals during module movement and superimposed on a "zero"image taken initially**
	- **• interference fringes appear revealing relative movements in 3 dimensions**
	- **• spatial resolution is given by λ/2 = 256 nm, and the number of observed fringes corresponds to the total sample displacement**

HAM: preliminary results

• Sample holographic image of the moving Si module

MUonE ECAL laser calibration

- **• Energy and gain calibration of the MUonE calorimeter with a pulsed laser system**
	- **• based on the experience from "Muon G-2 (simpler system, only 1 calorimeter)**
	- **• absolute energy calibration with a black body source**
- **• Now in the initial assembly phase**

INFN

Istituto Nazionale di Fisica Nue

Drawings courtesy of C. Ferrari - INO Pisa

ECAL WG in MUonE: E. Conti (INFN Padova), C. Ferrari (INO Pisa) and G. Cantatore (Univ. and INFN Trieste)

G. Cantatore - PBC Tech WG Optics Workshop - CERN, 10/12/21

- **• Optics is very much alive in experimental particle physics**
- **• Precision requirements for particle detectors are constantly stepping up, and optical techniques are an excellent solution in meeting them**
- **• Our creativity is the sole limitation!**

Backup

Laser source

G. Cantatore, "Muon g-2" Collaboration, University of Rijeka, July 5th 2021

Diffuser - the "PiTs frame"

First diffuser prototype: designed in Trieste and tested in Rijeka "

• thin 2 cm frme

stituto Nazionale i Filsica Nucleare

- the launching fiber hits a column of beamsplitters having increasing reflectivity
- reflected beams illuminate a grid of rectangular beamsplitters, also having increasing reflectivity, which steer the beams towards the calorimeter crystalso
- the transmitted beam returns to the Local Monitor

Efficient and compact, but assembly is delicate

from launching fiber

to the local monitor

by a beam splitter transmittance, *T*. If randomly generated number is greater **Assembly and uniformity tests in Rijeka**

Diffuser solution

Adopted diffuser solution

stituto Nazionale dhiFilsica Nucleare

- light from the launching fiber passes through a pre-diffuser which turns the beam profile from gaussian to flat
- a 54-fiber bundle $(+ 2$ "return fibers) collects light after the prediffuser and brings it to a distribution panel
- A thin Delrin panel, containing 54 90° reflecting mini-prisms, steers light towards the calorimeter crystals
- the two "return" fibers, one Si and one PMMA, bring light back to the Local Monitor

Source Monitor

The Source Monitor monitors the stability of the laser source. There is a total of 6 SM, one for each laser head. Each SM:

istituto Nazionale di Fisica Nucleare

- collects 30% of the laser initial intensity and averages out pointing fluctuations by means of an input integrationg sphere
- the 4 sphere outpits are sent to
	- 2 PIN photodiodes
	- a PMT coupled to a NaI scintillator
	- an optical fiber bringing the reference signal to the Local Monitor
- the signal amplitude "seen" by the PMT is calibrated in an absolute way against a low activity 241Am source

Local Monitor characteristics 3.2 The Local Monitor The Local Monitor $\mathcal{L}(n, \Lambda)$ $\frac{1}{2}$ and $\frac{1}{2}$ $\frac{1}{2}$ photo-multiplier tubes (Hamamatsu) tubes (H for the PMT operation. The LM boxes and rack are shown in figures \mathcal{L} As described in section 2, calibration laser pulses are directed from the optical table to each of the 24 calorimeters by later silical fibers, each coupled to a silical fibers, each coupled to a distribution of the 24 calorimeters of the 24 calorimeters of the 24 calorimeters. In principal size of the 24 calorimeter

Two twin Local Monitor systems, or about the total fiber damage may occur

lstituto Nazionale di Fisica Nucleare

 \bullet $$ during the long run-time period. The LM is thus intended to give a prompt diagnostic of the status of the status

table. Close to the boxes the boxes there is also a $C_{\rm eff}$ HV supply that provides the necessary voltage of \sim

 \bullet **redundant (LM2)**: monitors the 24 PMMA \bullet return fibers l ong fibers (one silica) and sending the Laser Hut to two L $r_{\rm cl, min}$ in the LM is needed to study and computed to temperature of the total to temperature of the temp

PMT racks and electronics are placed inside \mathbb{Z} shielded boxes in the Laser Hut, where "return" fibers from the ring terminate In order to be independent of possible fluctuations of the PMT gain in the LM, a small quantity

Each LM channel compares the signal from \blacksquare its return fiber with the reference signal **that are in the same last are i**lluminated by the same last are in **provided by a SM** and forth from the calorimeter position. In the calorimeter position \mathbf{z} $\frac{d}{dt}$ is also taken directly from the integrating sphere of the Source Monitor and guided by $\frac{d}{dt}$ \mathbb{R}^n sees the seconding figure 100 ns, corresponding to the \mathbb{R}^n

black tape and, after connection, by a light-tight plastic conduit. \mathbf{b}

LM PMTs and front-end electronics and Shielded LM boxes inside the Laser during assembly and rack prepared for connecting the fibers, the fibers, the fiber receptacles are covered with H uth receptacles are covered with H uth receptacles are covered with H uth receptacles are Shielded LM boxes inside the Laser Hut

Typical LM PMT trace

G. Cantatore, "Muon g-2" Collaboration, University of Rijeka, July 5th 2021