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H experiments at CERN AD/ELENA

ALPHA
Spectroscopy of 1S-2S in antihydrogen

ASACUSA, ALPHA
Spectroscopy of GS-HEFS in antihydrogen

ALPHA, AEgIS, GBAR

% Test free tall/equivalence principle with

antihydrogen
antihydrogen
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Matter/antimatter asymmetry and CPT tests
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Where are the antl atoms??

e —
,——--’——‘a—‘_"’-—* — =_— o~ -

Could a difference between matter and antimatter fundamental
properties explain baryon asymmetry?

For sure that would be a sign of hew physics

Dark
B Matter
o 24%

CPT theorem: “cornerstone” of QFT (with Lorentz invariance,
locality and unitarity) implies properties of matter &antimatter
have to be exactly equal or opposite

Dirac equation in the minimal Standard Model Extension

Strong baryon asymmetry in the universe

originating from a ~10-19 imbalance e ——

. . . . e.g. Lorentz and CPT Tests in Hydrogen, Antihydrogen, and Related Systems, A.
CP Vl(.)latl(.)n.ln the SM1s by far not enough to Kostelecky and A. Vargas, Phys. Rev. D 92, 056002 (2015)
explain this imbalance

Different measurements (even of the same quantity) are
sensitive (or not) to different SME coefficients

\W December 10, 2021 PBC Mini-Workshop

N/




Motivations for testing gravity with antimatter

e General relativity is a classical (non quantum) theory
e EEP violations may appear in some quantum theory
 New forces : scalar or vector mediators would not necessarily invalidate GR
(if similar magnitude cancellation for matter-matter but not for matter-antimatter)

Example: |/ — Gmym; (1F ae /¥ + be~"/%) a: Gravivector, b: Graviscalar
r — attractive (matter-matter)
+: repulsive: matter-antimatter
matter experiments: |a—b|
antimatter: atb
Attempted tests with antimatter C. Amole et al Nature Commumcatlons 4,1785 (2013)

. courtesy: http://newscenter.lbl.gov/2013/04/30/antimatter-up-down/
20 : |

o Attempts with charged positrons ~ 1967

o Attempts with charged antiprotons ~1985

e Indirect limits exist

» measurement with H by ALPHA collaboration, 2014
(rough, sensitivity ~100 times g)
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Green dots---simulated annihilations Time (mS) Red circles--- 434 Observed annihilations
Vertical position of annihilation vertex during release of trapping field

Any deviation from g would be an indication of new physics

\w December 10, 2021 PBC Mini-Workshop

N/




plethora of recent ground-breaking measurements with H

Letter | Open Access | Published: 04 April 2018 SpeCtrOSCOpy from the ground_State
Characterization of the 1S-2S transitionin

a“tih)’droge“ Article | Open Access | Published: 31 March 2021

M. Ahmadi, B. X. R. Alves, ... J. S. Wurtele <+ Show authors Laser COOIIng Ofantlhydrogen atoms

Nature 557, 71-75 (2018) | Cite this article C. J. Baker, W. Bertsche, ... J. S. Wurtele = + Show authors

Nature 592, 35-42 (2021) | Cite this article

Article | Published: 19 February 2020

Investigation of the fine structure of antihydrogen
Open Access | Published: 03 August 2017

Observation of the hyperfine spectrum of The ALPHA Collaboration
a“tih)’drogen Nature 578, 375-380 (2020) | Cite this article

M. Ahmadi, B. X. R. Alves, ... J. S. Wurtele = + Show authors

Fig.1: The ALPHA-2 central apparatus and magnetic field profile.
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CPT tests with H: what measurements?

TRAP experiments

Trap electrodes for
antiproton preparation

Mirror coils

ALPHA-2 apparatus

Antiproton
injection

Annihilation detector
(three layers)

Octupole >
\&\ Positron
Trap electrodes for / N\ niection
antihydrogen production Microwave
Trap electrodes for waveguide

positron preparation

Beam formation through magnetic focussing
Challenge: control of the quantum state

Measurement in a “field-free” region
Suited for hyperfine splitting measurement

December 10, 2021

2018 : 10-20 atoms /trials trapped
Accumulation over 8 hours shift

Trapping using magnetic moment
Challenge : shallow trap (~0.5K)

Lifetime of Rydberg states

n\3/1+1/2\°
n ~ — 2.4
et (30) ( 30 ) e

kT = p(B — Bo)
ke — 0.6 K. T1

Suited for 1S-2S measurement

Vs. BEAM experiments

Cusp trap
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Measurements with H

H formed in many high n-states (all sub-states)
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A path to ground-state antihydrogen formation

Novel developments addressing large quantum state distribution
The strategy: couple many states together to deexcite them to low n states

Fast (~50 us) and efficient (>50% of atoms in ground-state) methods

= 30 Energy n =30

THz + MW /

Energy

} population mixed
,~ n'=25o0r 20

population mixed ‘
280V/cm, 1T at 160°
laser
n' = 3 . — Tl” =3 m
. M (magnetic quantum number) >
Mixing via E,B fields Mixing via THz and microwave light
D. Comparat and C. Malbrunot Phys. Rev. A 99 (2019) 013418 T. Wolz, C. Malbrunot et al. Phys. Rev. A 101 (2020) 043412

Requirements: many sharp transitions between 200GHz and ~40 THz (n’=5)
Total power several mW/cm”2 (THz only scheme)
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https://journals.aps.org/pra/abstract/10.1103/PhysRevA.99.013418
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.99.013418
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.043412
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.043412

A path to ground-state antihydrogen formation

Novel developments addressing large quantum state distribution
The strategy: couple many states together to deexcite them to low n states

GS fraction

1.0

Fast (~50 us) and efficient (>50% of atoms in ground-state) methods

Energy
THz + MW /

Il
W

nl

"= 250r 20
population mixed K n or

Mixing via THz and microwave light

T. Wolz, C. Malbrunot et al. Phys. Rev. A 101 (2020) 043412

Requirements: many sharp transitions between 200GHz and ~7GHz
Total power several mW/cm”2 (THz only scheme)
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https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.043412
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.043412

Experimental demonstration

Experimental demonstration on-going with H

Demonstrate the use of photomixer for fast

deexcitation
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proof-of-principle demonstration on targeted transitions in Cs
Eur. Phys. ] D 75:27 (2021)
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Population of 40Ds, level as a function of the FI delay with respect
to the excitation laser as stimulated by a BB lamp. Simulation data
for a BB spectrum of 1200K is indicated in grey.
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Stimulated 365, ,, = 36P;/, transfer stimulated by a
photomixer (97 GHz, spectral width 5 MHz).
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Fast deexcitation: application to H formation

A. Wolf, Hyperfine Interact. 76, 189 (1993)

E Simple srr Srr followed by deexcitation
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T. Wolz, C. Malbrunot et al. Phys. Rev. A 101 (2020) 043412
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https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.043412
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.043412
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Fast deexcitation: application to trapped atoms

cooling and loss mechanism by spontaneous decay

oling by deexcitation in a trap

Spontaneous decay case

Pohl et al. PRL 97, 213001 (2006)
Taylor et al. J. Phys. B: At. Mol. Opt. Phys. 39 (2006) 4945-4959

)

kT = u(B — By)
H=mXUg

Enhance this effect by stimulating the deexcitation at the edges

O (see also PRA 80, 041404R (2009))
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Conclusions

» THz technology: fast evolving field

e Rydberg atoms manipulation: hot topic. Quantum computing etc
» H atoms formed in Rydberg states

e Stimulation of their decay needed for beam experiments

e Stimulation based on light mixing is promising. Performance of THz-only solution limited by available powers
at high frequencies

o Experimental demonstration on hydrogen ongoing

» Several other application of fast stimulated decay: H production directly in ground state, cooling in magnetic
trap
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