THz Lasers and Rydberg atoms

Chloé Malbrunot CERN

December 10, 2021

PBC Mini-Workshop

H experiments at CERN AD/ELENA

ALPHA Spectroscopy of 1S-2S in antihydrogen

ASACUSA, ALPHA Spectroscopy of GS-HFS in antihydrogen

ALPHA, AEgIS, GBAR Test free fall/equivalence principle with antihydrogen

December 10, 2021

Matter/antimatter asymmetry and CPT tests

CPT theorem: "cornerstone" of QFT (with Lorentz invariance, locality and unitarity) implies properties of matter&antimatter have to be exactly equal or opposite

Strong baryon asymmetry in the universe

originating from a ~10⁻¹⁰ imbalance

CP violation in the SM is by far not enough to explain this imbalance

December 10, 2021

Could a difference between matter and antimatter fundamental properties explain baryon asymmetry?

Maybe.....

For sure that would be a sign of <u>new physics</u>

Dirac equation in the minimal Standard Model Extension

$$(i\gamma^{\mu}D_{\mu} - m_e + a^e_{\mu}\gamma^{\mu} - b^e_{\mu}\gamma_5\gamma^{\mu})$$
$$-\frac{1}{2}H^e_{\mu\nu}\sigma^{\mu\nu} + ic^e_{\mu\nu}\gamma^{\mu}D^{\nu} + id^e_{\mu\nu}\gamma_5\gamma^{\mu}D^{\nu})\psi = 0$$

e.g. Lorentz and CPT Tests in Hydrogen, Antihydrogen, and Related Systems, A. Kostelecky and A. Vargas, Phys. Rev. D 92, 056002 (2015)

Different measurements (even of the same quantity) are sensitive (or not) to different SME coefficients

Motivations for testing gravity with antimatter

- General relativity is a classical (non quantum) theory
- EEP violations may appear in some quantum theory
- New forces : scalar or vector mediators would not necessarily invalidate GR (if similar magnitude cancellation for matter-matter but not for matter-antimatter)

Example:
$$V = -\frac{Gm_1m_2}{r}(1 \mp a e^{-r/v} + b e^{-r/s})$$
 a: Gravivector
- attractive (m
+: repulsive: r
matter experi
antimatter:

Attempted tests with antimatter

- Attempts with charged positrons ~ 1967
- Attempts with charged antiprotons ~1985
- Indirect limits exist
- measurement with H by ALPHA collaboration, 2014 (rough, sensitivity ~100 times g)

Any deviation from g would be an indication of new physics

December 10, 2021

or, b: Graviscalar matter-matter) matter-antimatter iments: |a-b| a+b

plethora of recent ground-breaking measurements with H

Letter Open Access Published: 04 April 2018

Characterization of the 1S–2S transition in antihydrogen

M. Ahmadi, B. X. R. Alves, ... J. S. Wurtele + Show authors

Nature 557, 71–75 (2018) Cite this article

Article Open Access Published: 31 March 2021 Laser cooling of antihydrogen atoms

C. J. Baker, W. Bertsche, ... J. S. Wurtele + Show authors

Nature 592, 35–42 (2021) Cite this article

Open Access Published: 03 August 2017

Observation of the hyperfine spectrum of antihydrogen

M. Ahmadi, B. X. R. Alves, ... J. S. Wurtele + Show authors

Nature **548**, 66–69 (2017) Cite this article

December 10, 2021

spectroscopy from the ground-state

Article Published: 19 February 2020

Investigation of the fine structure of antihydrogen

The ALPHA Collaboration

Nature 578, 375–380 (2020) Cite this article

Mirror coils Octupole Solenoid Cavity output Vacuum window Photodiode couple Microwaves Piezo stack Annihilation Positron detector preparation 100 200 300 400

Fig. 1: The ALPHA-2 central apparatus and magnetic field profile.

CPT tests with H: what measurements?

TRAP experiments

Vs.

Beam formation through magnetic focussing Challenge: control of the quantum state

Measurement in a "field-free" region Suited for hyperfine splitting measurement

December 10, 2021

- Trapping using magnetic moment Challenge : shallow trap (~0.5K)
 - $kT = \mu(B B_0)$ $\frac{\mu_B}{k} = 0.6 \,\mathrm{K.T^{-1}}$
- 2018 : 10-20 atoms /trials trapped Accumulation over 8 hours shift
- Suited for 1S-2S measurement

Lifetime of Rydberg states

$$\tau_{n,1} \approx \left(\frac{n}{30}\right)^3 \left(\frac{l+1/2}{30}\right)^2 2.4 \,\mathrm{ms}$$

BEAM experiments

Measurements with **H**

December 10, 2021

PBC Mini-Workshop

A path to ground-state antihydrogen formation

Novel developments addressing large quantum state distribution The strategy: couple many states together to deexcite them to low n states

Fast (~50 μ s) and efficient (>50% of atoms in ground-state) methods

D. Comparat and C. Malbrunot Phys. Rev. A 99 (2019) 013418

Requirements: many sharp transitions between 200GHz and ~40 THz (n'=5) Total power several mW/cm² (THz only scheme)

December 10, 2021

PBC Mini-Workshop

A path to ground-state antihydrogen formation

Novel developments addressing large quantum state distribution The strategy: couple many states together to deexcite them to low n states

Fast (~50 μ s) and efficient (>50% of atoms in ground-state) methods

December 10, 2021

Mixing via THz and microwave light

T. Wolz, C. Malbrunot et al. Phys. Rev. A 101 (2020) 043412

Requirements: many sharp transitions between 200GHz and ~7GHz Total power several mW/cm² (THz only scheme)

PBC Mini-Workshop

Experimental demonstration

for a BB spectrum of 1200K is indicated in grey.

December 10, 2021

Fast deexcitation: application to H formation

A. Wolf, Hyperfine Interact. 76, 189 (1993)

T. Wolz, C. Malbrunot et al. Phys. Rev. A 101 (2020) 043412

December 10, 2021

Fast deexcitation: application to trapped atoms

Cooling by deexcitation in a trap Spontaneous decay case

$$kT = \mu(\mu = \mu)$$

Pohl et al. PRL **97,** 213001 (2006) Taylor et al. J. Phys. B: At. Mol. Opt. Phys. **39** (2006) 4945–4959

PBC Mini-Workshop

Conclusions

- THz technology: fast evolving field
- Rydberg atoms manipulation: hot topic. Quantum computing etc
- H atoms formed in Rydberg states
- Stimulation of their decay needed for beam experiments
- at high frequencies
- Experimental demonstration on hydrogen ongoing
- trap

• Stimulation based on light mixing is promising. Performance of THz-only solution limited by available powers

• Several other application of fast stimulated decay: \bar{H} production directly in ground state, cooling in magnetic

