

Frequency Scanning Interferometry for absolute measurements and its applications

M. Sosin, H. Mainaud-Durand, V. Rude, J. Rutkowski

Outline

- High-Luminosity LHC (HL-LHC) and alignment systems
- Frequency Sweeping Interferometry (FSI) classical approach
- First HL-LHC FSI applications
- Multi-target FSI (MT-FSI) as an alternative for robust measurements
- MT-FSI instrumentation examples
- Conclusions

CERN HL-LHC Upgrade and Alignment Monitoring Systems

HL-LHC alignment monitoring and FSI

Introduction - Frequency Sweeping Interferometry

$$I(t,\tau) = A \cdot \cos[2\pi(\alpha \tau t + f_0 \tau)]$$

- A magnitude of the signal;
- τ is the time delay between the signals from the reflecting target and reference mirror arrival to photodetector;

$$\alpha$$
 – is a sweep rate of the laser ($\alpha = \frac{d\nu}{dt}$ - laser frequency change in time);

 f_0 – is an optical frequency of the laser at the time t_0 .

Classical FSI

ETALON[®]

- Uncertainty (95%) = 0.5 μm/m
- Measurement distance: 0.2 20 m
- Double sweep laser dynamic FSI
- Gas cell traceability (www.etalon-gmbh.com)

FSI for internal monitoring of cold objects inside cryostats

Internal monitoring (classial FSI) – first conclusions

CRAB CAVITY:

- System allows to follow the cooled crab cavity position/orientation
- Micrometric resolution of objects movements achieved
- Continuous measurement by over 6 months
- However! 2 targets visibility lost during measurements (Cryocondensation? Lateral target displacement?)

INNER TRIPLET:

- Big lateral shifts of reflector caused by thermal contraction not allow to follow full cool-down cycle of the magnet
 - Tip-til adjustment of optical head needed
- Cryocondensation is an issue for reflector visibility
 - Solved by special design of reflector support
- Micrometric resolution of objects movements achieved

Classical FSI – summary

- System is sensitive to return signal intensity level (beam alignment important)
 - Reflectors lateral position or dust on the reflectors have big impact on measurement performance
- Beam diameter defines transversal movement range of the target
- Optical feedthroughs needs to include tip-tilt adjustment functionality for initial beam position targeting into retroreflector (higher cost of feedthrough, need of adjustment after cool down)
- Only collimated beams and observation of single target

Multi-target FSI (Fourier analysis based)

 α – is a sweep rate of the laser ($\alpha = \frac{d\nu}{dt}$ - laser frequency change in time);

c – speed of light; n – refractive index of light transmission medium;

 $\tau-\text{time}$ of flight of laser to the target

Multi-Target FSI – simple measurement setup

- Allows for flexible optical connections and scalability of the interferometer channels number
- Single laser (simple, but vibration sensitive) or "dynamic" dual laser/sweep FSI (complex, more expensive)

Multi-target FSI – advantages

- Very robust measurement method almost insensitive to the light intensity (high and very small power reflections visible over the noise background
 - Possible to use cheap glass balls as a reflectors
 - Possible to measure reflection from various surfaces
- Measurement uncertainty <5 μm (single laser configuration, no vibrations)
- Possible to measure multiple targets within single laser scan
- Possible to use with the collimated and divergent beams
- Simple beam delivery optics

Divergent

Multi-target FSI – applications

Launch of the divergent beam directly from the bare fibre ferrules as most optimized solution

- Divergence angle defined by NA
- Sufficient to measure distances up to 0.7m
- Easy to measure "interference origin" (ferrule tip axis using CMM)

BARE FIBRE FERRULES (LASER TRANSMITTER – MARKED T1-T6)

Multi-target FSI – applications

0.40551 0.406430

Multiple reflection applications

- Multi-reflection sensors
- Multi-sensor solutions (serial connection of sensors)
 - Different physical quantities measurement through measurement of length of cavities created within the fibre

Multi-target FSI – drawbacks

Frequency spectrum will show all the reflections including also the unwanted ones

- Internal parasitic reflections (e.g. circulators)
- Fibres Rayleigh scattering increase noise ratio
- Sensitive to parasitic reflections from shiny surfaces surrounding the measured reflectors/surfaces
- Multi-surface or multi-sensor beat frequency peeks can not overlap

MT-FSI Instrumentation – glass ball

- Refractive index ≈2 glass ball used as an alternative to hollow retroreflectors or BMRs (big reduction of installation cost!)
 - 0.5" uncoated and coated reflectors manufactured and tested
 - TAFD 55 and S-LAH79 ball reflectors radiation hard 5MGy, 10MGy samples under tests
 - Coated glass ball reflector measurable by laser trackers

MT-FSI Instrumentation – vacuum heads

Simple vacuum FSI head for HL-LHC internal monitoring

- No moving parts, cheap, single steel body design
- Wide patrol field big lateral reflector movement range
- Low cost (bare fibre ferrule beam launch)

MT-FSI instrumentation - cryo-compatible reflector supports

- "Passive", SIMPLE design to suppress cryocondensation effect
- 3D printed targets to provide complex insulator shape
- Graphite coated, heat interception plate
- MLI film to minimize heat radiation towards cold mass of magnet

MT-FSI Instrumentation – interferometric Hydrostatic Levelling Sensor (iHLS)

- Single metal body chassis, no movable parts, minimum amount of optical components
- Measurement uncertainty < 5μm, precision ~1 μm
- Multiple level sensor under design

MT-FSI Instrumentation – optical inclinometer

1-st prototype (1-axis)

Optical inclinometer for HL-LHC

- Resolution <10 µrad
- Differential pendulum measurement to anticipate thermal expansion effects
- Two generations of prototypes tested, allowed for final approach selection
- 3-rd final generation of inclinometer under tests

Multi-Target FSI – Long/Short distance measurement sensors

Distance measurement for UPS vs. Tunnel radial reference transmission

- ~15 m distance
- Standardized collimated optics to be used
- Expected measurement uncertainty < 40µm
- Precision ~5 µm
- Under development

Short distance measurement sensor (range ±5 .. 10mm)

- To replace current capacitive sensor
- Design with thin wall bellow protection against the dust
- Expected measurement uncertainty < 5µm
- Precision ~1 µm
- Maximally simplified (bare-ferrule + glass ball reflector) to increase reliability

Multi-Target FSI – interferometers

Measurement setups:

- Proof-of-concept with 2 channels by BE-GM in 2017
- Portable measurement setups (16..24 multiplexed channels) in 2019/20

HL-LHC production setup(M. Lipinski – BE-CEM-EDL):

- Final system with **1000 channels** by BE-CEM for **LS3**
 - Based on **DI/OT**
 - Custom photodetector acquisition module
 - 10 Gbps Ethernet links to GPU servers
 - Advanced computations in GPUs (FFT, linearisation, fitting)
 - Over **1 Tbps** of raw data produced by all channels
 - Over **3 GB** of data to be processed each second by 4 GPU servers
 - Demonstrator: end of 2021

FSI photodetector module

Conclusions

- Fourier analysis based FSI allow to track distances to various types of reflectors or reflecting surfaces (with various intensities of interference beat signals)
- Appropriate approach to sensor design, combined with MT-FSI properties makes it possible to create very simple and robust sensors and sensor networks
- Reduction of the optics complexity, allowed to use absolute interferometry for big-scale installations

Thank you for your attention