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▪ High-Luminosity LHC (HL-LHC) and alignment systems

▪ Frequency Sweeping Interferometry (FSI) – classical approach

▪ First HL-LHC FSI applications

▪ Multi-target FSI (MT-FSI) as an alternative for robust 

measurements

▪ MT-FSI instrumentation examples

▪ Conclusions
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CERN HL-LHC Upgrade and Alignment Monitoring Systems
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Alignment of LSS components

▪ Vertical levelling of components (w.r.t. water surface)

▪ Radial alignment (stretched wire)

▪ Roll angle monitoring (inclinometers)

▪ Magnets longitudinal position monitoring

▪ Position monitoring of cold (nominal 2 .. 4 K) 

objects inside cryostats 

P1 (ATLAS) & P5 (CMS) Long Straight Sections 

<0.5 mm @ 420m

<0.1 mm @ 150m



HL-LHC alignment monitoring  and FSI
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Internal monitoring cold components

(crab-cavities, inner triplets)

Nominal Temp.: 2 .. 4 K

320 x

Interferometer

(radiation safe 

location)

420 m

Hydrostatic levelling sensor

(humidity close to 100%)

120 x

Inclinometer

70 xMagnets longitudinal position monitoring

48 x

Why Frequency Sweeping Interferometry?

▪ Absolute distance measurement needed

▪ Measurement uncertainty (per ch) better than 10 µm / 10 µrad required

▪ Capacitive sensors very sensitive to dust and EM noise (replaced to optical

ones where possible)

▪ Cabling and sensors cost need to be decreased

▪ Big amount of channels, Large installation

▪ Simple and maintenance free systems needed (difficult access due

to high radiation levels)

Wire Position Sensor (X-Y position 

measurement w.r.t. stretched, 

conductive wire)

140 x

Capacitive

FSI

LHC TUNNEL
TID ~1MGy

T=20..25 °C



Introduction - Frequency Sweeping Interferometry

I(t,τ) = A·cos[2π(α τt + f0 τ)]

A – magnitude of the signal;  
τ  - is the time delay between the signals from the reflecting target and reference mirror arrival to photodetector; 

α – is a sweep rate of the laser ( 𝛼 =
𝑑𝜈

𝑑𝑡
  - laser frequency change in time );  

f0 – is an optical frequency of the laser at the time t0. 
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Classical FSI

SWEEPING 
LASER

SOURCE

DETECTION AND
MEASUREMENT

OPTICAL 
CIRCULATOR

▪ Uncertainty (95%) = 0.5 µm/m

▪ Measurement distance: 0.2 – 20 m

▪ Double sweep laser – dynamic FSI

▪ Gas cell traceability

(www.etalon-gmbh.com)

Frequency Scanning Interferometry allows for absolute distance 
measurement with µm uncertainty

Retroreflector

Collimator

®
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• First FSI application  – crab cavity position monitoring

• 2016 .. 2018

FSI for internal monitoring of cold objects inside cryostats

Crab cavity (2K)

Magnet cold 

mass (2K)

• Second FSI application – inner triplet cold mass position monitoring

• 2017 .. 2019

FSI vacuum head

Retroreflector
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Internal monitoring (classial FSI) – first conclusions

CRAB CAVITY:

• System allows to follow the cooled crab cavity 

position/orientation

• Micrometric resolution of objects movements achieved

• Continuous measurement by over 6 months

• However! 2 targets visibility lost during measurements 

(Cryocondensation? Lateral target displacement?)

INNER TRIPLET:

• Big lateral shifts of reflector caused by thermal contraction 

not allow to follow full cool-down cycle of the magnet

• Tip-til adjustment of optical head needed

• Cryocondensation is an issue for reflector visibility

• Solved by special design of reflector support

• Micrometric resolution of objects movements achieved
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▪ System is sensitive to return signal intensity level (beam alignment important)

▪ Reflectors lateral position or dust on the reflectors have big impact on measurement performance

▪ Beam diameter defines transversal movement range of the target

▪ Optical feedthroughs needs to include tip-tilt adjustment functionality for initial beam position 

targeting into retroreflector (higher cost of feedthrough, need of adjustment after cool down)

▪ Only collimated beams and observation of single target

Collimated 

cylindrical 

beam

Classical FSI – summary



Multi-target FSI (Fourier analysis based)

RT2
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DRT2

α – is a sweep rate of the laser ( 𝛼 =
𝑑𝜈

𝑑𝑡
- laser frequency change in time ); 

c – speed of light; n – refractive index of light transmission medium;

τ – time of flight of laser to the target

FFT
I(t,τ) = A1·cos[2π(ατ1t + f0 τ1)]+  

A2·cos[2π(ατ2t + f0 τ2)]+  
A3·cos[2π(ατ3t + f0 τ3)]… 



Multi-Target FSI – simple measurement setup

▪ Allows for flexible optical connections and scalability of the interferometer channels number

▪ Single laser (simple, but vibration sensitive) or „dynamic” - dual laser/sweep – FSI (complex, more 

expensive)

Linearisation

Sweep frequency 

traceability



Multi-target FSI – advantages

▪ Very robust measurement method – almost insensitive to the light intensity (high and very 
small power reflections visible over the noise background

▪ Possible to use cheap glass balls as a reflectors

▪ Possible to measure reflection from various surfaces

▪ Measurement uncertainty <5 µm (single laser configuration, no vibrations)

▪ Possible to measure multiple targets within single laser scan

▪ Possible to use with the collimated and divergent beams

▪ Simpe beam delivery optics

Divergent

beam

Collimated

cylindrical

beam

LIGHT EMMISION POINT
FERRULE CYLINDER AXIS

n=2
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Launch of the divergent beam directly from the bare 

fibre ferrules as most optimized solution

▪ Divergence angle defined by NA

▪ Sufficient to measure distances up to 0.7m

▪ Easy to measure „interference origin” (ferrule tip

axis using CMM)

Multi-target FSI – applications

BARE FIBRE FERRULES 
(LASER TRANSMITTER – 

MARKED T1-T6)

GLASS BALL φ4, φ8mm 
(LASER REFLECTOR – 

MARKED R1-R9)
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Multiple reflection applications

▪ Multi-reflection sensors

▪ Multi-sensor solutions (serial connection 

of sensors)

▪ Different physical quantities measurement 

through measurement of length of cavities 

created within the fibre

Retroreflector

RetroreflectorRetroreflector

Glass ball 
reflector

TO 
INTERFEROMETER

FIBRE
SPLITTER 

80/20

FIBRE
SPLITTER 

80/20

FIBRE
SPLITTER 

80/20

SENSOR 1 SENSOR 2

SENSOR 3

SENSOR 4

Multi-target FSI – applications



15

Frequency spectrum will show all the reflections including also the unwanted 

ones

▪ Internal parasitic reflections (e.g. circulators)

▪ Fibres Rayleigh scattering increase noise ratio

▪ Sensitive to parasitic reflections from shiny surfaces surrounding the 

measured reflectors/surfaces

▪ Multi-surface or multi-sensor – beat frequency peeks can not overlap

Multi-target FSI – drawbacks



▪ Refractive index ≈2 glass ball used as an alternative to hollow

retroreflectors or BMRs (big reduction of installation cost!)

▪ 0.5” uncoated and coated reflectors manufactured and tested

▪ TAFD 55 and S-LAH79 ball reflectors radiation hard 5MGy, 10MGy

samples under tests

▪ Coated glass ball reflector measurable by laser trackers

MT-FSI Instrumentation – glass ball 

reflectors
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FSI head

Laser beam

patrol field

Reflector

External reference

Simple vacuum FSI head for HL-LHC internal monitoring

▪ No moving parts, cheap, single steel body design

▪ Wide patrol field – big lateral reflector movement range

▪ Low cost (bare fibre ferrule beam launch)

MT-FSI Instrumentation – vacuum heads
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MT-FSI instrumentation - cryo-compatible reflector supports

▪ „Passive”, SIMPLE design to suppress cryo-

condensation effect
• 3D printed targets to provide complex insulator shape

• Graphite coated, heat interception plate

• MLI film to minimize heat radiation towards cold mass of magnet

F. Micolon



Cost optimized, divergent beam FSI HLS sensor for HL-LHC

▪ Single metal body chassis, no movable parts, minimum amount of 

optical components

▪ Measurement uncertainty  < 5µm, precision ~1 µm

▪ Multiple level sensor under design

MT-FSI Instrumentation – interferometric 

Hydrostatic Levelling Sensor (iHLS)
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Optical inclinometer for HL-LHC

▪ Resolution <10 µrad

▪ Differential pendulum measurement to anticipate thermal expansion effects

▪ Two generations of prototypes tested, allowed for final approach selection

▪ 3-rd – final generation of inclinometer under tests

MT-FSI Instrumentation – optical 

inclinometer
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1-st prototype (1-axis)
2-nd prototype (2-axis)

3-rd (final) prototype (1-axis)



Multi-Target FSI – Long/Short distance measurement sensors

Short distance measurement sensor  (range ±5 .. 10mm)

▪ To replace current capacitive sensor

▪ Design with thin wall bellow protection against the dust

▪ Expected measurement uncertainty < 5µm

▪ Precision ~1 µm

▪ Maximally simplified (bare-ferrule + glass ball reflector) 

to increase reliability

Distance measurement for UPS vs. Tunnel radial

reference transmission

▪ ~15 m distance

▪ Standardized collimated optics to be used 

▪ Expected measurement uncertainty < 40µm

▪ Precision ~5 µm

▪ Under development



Multi-Target FSI – interferometers

Measurement setups:

• Proof-of-concept with 2 channels by BE-GM 
in 2017

• Portable measurement setups (16..24 
multiplexed channels) in 2019/20

HL-LHC production setup(M. Lipinski – BE-CEM-EDL):

• Final system with 1000 channels by BE-CEM for LS3 
– Based on DI/OT

– Custom photodetector acquisition module

– 10 Gbps Ethernet links to GPU servers

– Advanced computations in GPUs (FFT, linearisation, fitting)

– Over 1 Tbps of raw data produced by all channels 

– Over 3 GB of data to be processed each second by 4 GPU servers

– Demonstrator: end of 2021

Server

FMC

DIOT-SB

SFP

SFP

8 ch

Photodet
Module 8

8 ch

Photodet
Module 1

x 8

Et
h

x 4

FSI Rack

8 x 9.6 Gbps

FPGA

10G
NIC

SF
P

SF
P

SF
P

SF
PGPU

FESA

FSI SW

DI/OT chassis

x 4

8-10 Gbps, direct fiber

Trig. 
from
laser

FPGA FPGA

TN: diagnostics/management

FSI
test

setup

FSI
photodetector
module



Conclusions
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• Fourier analysis based FSI allow to track distances to various types of

reflectors or reflecting surfaces (with various intensities of interference beat

signals)

• Appropriate approach to sensor design, combined with MT-FSI properties 

makes it possible to create very simple and robust sensors and sensor 

networks

• Reduction of the optics complexity, allowed to use absolute interferometry 

for big-scale installations



Thank you for your attention
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