ATLAS & CMS combination of inclusive tt cross-section at 7 & 8 TeV

Extraction of top quark pole mass and α_s

3rd December 2021

Véronique Boisvert, Jan Kieseler

Introduction

ATLAS (EPJC 76 (2016) 642)

7TeV: 182.9±3.1(stat)±4.2(syst)±3.6(lumi) pb (3.5%)

8TeV: 242.9±1.7(stat)±5.5(syst)±5.1(lumi) pb (3.2%)

CMS (JHEP 08 (2016) 029)

7TeV: 173.6 \pm 2.1 (stat) \pm 4.5 (syst) \pm 3.8 (lumi) pb (3.6%)

8TeV: 244.9 \pm 1.4 (stat) \pm 6.3 (syst) \pm 6.4 (lumi) pb (3.7%)

- Precise ttbar cross sections give access to
 - Comparison and confirmation of high order QCD predictions
 - Mass in well defined renormalisation schemes
 - Strong coupling at high scales
- High precision Run I legacy results
- Same channel but different contributions from uncertainties
- Large gain is almost a guaranteed

The measurements in a nutshell

ATLAS

- Determine b-jet efficiency and cross section simultaneously to decrease JES and b-tag uncertainties
- Evaluate for each uncertainty

$$N_{1} = L\sigma_{t\bar{t}} \epsilon_{e\mu} 2\epsilon_{b} (1 - C_{b}\epsilon_{b}) + N_{1}^{\text{bkg}},$$

$$N_{2} = L\sigma_{t\bar{t}} \epsilon_{e\mu} C_{b}\epsilon_{b}^{2} + N_{2}^{\text{bkg}},$$

CMS

$$N_{0,\geq 3} = L\sigma_{t\bar{t}} \,\epsilon_{e\mu} - (N_1 - N_1^{\text{bkg}}) - (N_2 - N_2^{\text{bkg}}) + N_{0,\geq 3}^{\text{bkg}},$$

- Use the equations (plus one more) to parametrise total signal contribution
- Perform a simultaneous binned likelihood fit of the jet pT (and total event yield) in categories of b jets and additional light jets
- As a result all fit parameters are potentially correlated

Systematics in Detail

ATLAS	Merged u	ncertainty [%]
Source	7 TeV	8 TeV
Trigger	0.2	0.2
Lepton (mis-)ID/isolation	0.9	0.8
Lepton energy scale	0.3	0.5
JES flavour composition/specific response	0.2	0.4
JES modelling	0.04	0.2
JES central/forward balance	0.03	0.1
JES pile-up	0.03	0.2
Other JES	0.03	0.2
Jet energy resolution	0.3	0.5
<i>b</i> -jet ID	0.4	0.4
<i>b</i> -jet mis-ID	0.02	0.02
tW background	0.8	0.8
Drell-Yan background	0.05	0.02
Diboson background	0.1	0.1
$t\bar{t}$ scale choice	0.3	0.3
$t\bar{t}$ generator modelling	1.4	1.2
PDF	1.0	1.1
Integrated luminosity	2.0	2.1
Statistical	1.7	0.7
Total uncertainty	3.5	3.2

- ATLAS: 'standard' quadratic sum
- CMS: Evaluate impact by fixing group of uncertainties, repeating the fit and recording difference in total uncertainty in quadrature

CMS	Uncertainty [%]	
Source	7 TeV	8 TeV
Trigger	1.3	1.2
Lepton (mis-)ID/isolation	1.5	1.5
Lepton energy scale	0.2	0.1
JES total	0.8	0.9
Jet energy resolution	0.1	0.1
<i>b</i> -jet ID	0.5	0.5
b-jet mis-ID	0.2	0.1
Pile-up	0.3	0.3
tW background	1.0	0.6
Drell-Yan background	1.4	1.3
Non- $e\mu t\bar{t}$	0.1	0.1
$t\bar{t}V$ background	0.1	0.1
Diboson background	0.2	0.6
W+jets/QCD background	0.1	0.2
tt scale choice	0.3	0.6
ME/PS matching	0.1	0.1
ME generator	0.4	0.5
Hadronisation (JES)	0.7	0.7
Top-quark p_T modelling	0.3	0.4
Colour reconnection	0.1	0.2
Underlying event	0.1	0.1
PDF	0.2	0.3
Integrated luminosity	2.2	2.6
Statistical	1.2	0.6
$t\bar{t}$ scale choice (extrapolation)	+0.1	+0.2
ME/PS matching (extrapolation)	-0.4 +0.1	-0.1 +0.3
Top-quark $p_{\rm T}$ (extrapolation)	-0.1 +0.5	-0.3 +0.6
PDF (extrapolation)	-0.3 +0.1	-0.3 +0.1
	-0.1 + 3.6	-0.1 +3.7
Total uncertainty	-3.5	-3.5

How the combination is done

- ATLAS (same analysis at 7 and 8 TeV)
 - uncorrelated uncertainties
 - group of individual uncertainties in the paper, adapted to correspond to CMS ones as closely as possible
- CMS simultaneous fit at 7 and 8 TeV
 - post-fit the uncertainties are correlated
 - can not be easily grouped together
- BLUE program can not be used due to this correlation of uncertainties within one of the measurement
- Convino program (approximate the measurement likelihood, introduce penalty terms for correlation assumptions, input central values and covariances, fit a Chi2)
 - Published paper: JK, EPJC (2017) 77: 792 (arXiv:1706.01681)
 - → Approved by ATLAS & CMS Stats Committee/Forum

Combination Method

• Find approximation for initial measurement likelihood (Covariance/Hessian known)

$$ilde{H}_{ ext{in}}^{lpha} = egin{pmatrix} ilde{D} & \kappa^T \ \kappa & ilde{M} \end{pmatrix}^{lpha}$$

Assume form:
 statistical + nuisance constraints + systematic penalty terms

$$\chi^2 = \sum_{\alpha} \left(\chi_{s,\alpha}^2 + \chi_{u,\alpha}^2 \right) + \chi_p^2$$

Derive terms through derivatives

$$\chi_{s,\alpha}^2 = \sum_{\mu\nu} M_{\mu\nu}^{\alpha} \frac{\xi_{\mu}^{\alpha} \xi_{\nu}^{\alpha}}{\tau_{\mu}^{\alpha} \tau_{\nu}^{\alpha}} \text{ and}$$

$$\chi_{u,\alpha}^2 = \sum_{ij} \lambda_i D_{ij}^{\alpha} \lambda_j, \text{ with}$$

$$\xi_{\mu}^{\alpha} = x_{\mu}^{\alpha} - \bar{X}_{\mu} \text{ and}$$

$$\bar{X}_{\mu} = \bar{x}_{\mu} \prod_{i} (\lambda_i K_{\mu i}^{\alpha} / x_{\mu}^{\alpha} + 1) + \sum_{i} \lambda_i k_{\mu i}^{\alpha}.$$

- Expression for 'data fit' separate from nuisance penalty terms
- Just add input measurements and build one combined matrix with penalty terms containing correlation assumptions in the off-diagonal elements

Correlation assumptions

These assumptions are in line with previous combinations

- Define possible correlation values:
 - Full: I, high: 0.75, half: 0.5, low: 0.25, no: 0
- For all (significant) uncertainties, scan assumption in the range of +- 0.25
 - Also includes unc. assumed to be uncorrelated
 - No significant effect except for luminosity
- Largest impact from choices of:
 - Lepton ID/Resolution: 0.5
 - Luminosity: 0.1

ATLAS merged uncertainties	Value	CMS uncertainties
Lepton ID and energy resolution	HALF	Lepton ID and energy resolution
	HIGH	JES flavour composition
JES flavour composition/specific response	-LOW	<i>b</i> -jet fragmentation tune
	LOW	b-jet neutrino decay fraction
IEC 1-11'	HALF	JES: AbsoluteMPFBias 7 TeV
JES modelling	HALF	JES: AbsoluteMPFBias 8 TeV
IFC 1/C 11 . 1	HIGH	JES: RelativeFSR 7 TeV
JES central/forward balance	HIGH	JES: RelativeFSR 8 TeV
tW background	HIGH	tW single top quark correlated
	LOW	tW single top quark 7 TeV
-	LOW	tW single top quark 8 TeV
	HIGH	Diboson correlated
Diboson	LOW	Diboson 7 TeV
	LOW	Diboson 8 TeV
$t\bar{t}$ scale choice	HALF	$t\bar{t}$ scale choice
ii scale choice	HALF	$t\bar{t}$ scale choice (extrapolation)
	LOW	Top-quark $p_{\rm T}$
	LOW	Top-quark p_T (extrapolation)
	-LOW	ME generator
$t\bar{t}$ generator	LOW	ME/PS matching
	LOW	ME/PS matching (extrapolation)
	-LOW	Colour reconnection
	-LOW	Underlying-event tune
Each PDF CT10 eigenvector	FULL	Each PDF CT10 eigenvector
Integrated luminosity	0.1	Integrated luminosity
·		•

Correlation assumptions (2)

Trigger:

- ATLAS and CMS use different triggers (single lepton and dilepton)
- Efficiencies are measured differently (tag&probe versus MET monitoring triggers)
- B-tagging
 - Taken as uncorrelated, different methods in ATLAS and CMS, also not a significant source of uncertainties given the measurement techniques
- JES:
 - Following JES group guidelines and previous combinations

https://cds.cern.ch/record/1956734 https://cds.cern.ch/record/2103759

- Exception: JES relFSR: should be 0.5-1.0, but is one uncertainty for 7 and 8 TeV in ATLAS, and uncorrelated between 7 and 8 TeV in CMS: poses logic issue: set to 0.7
- Impact of JES relFSR very small for both measurements
- Does not have a measurable impact

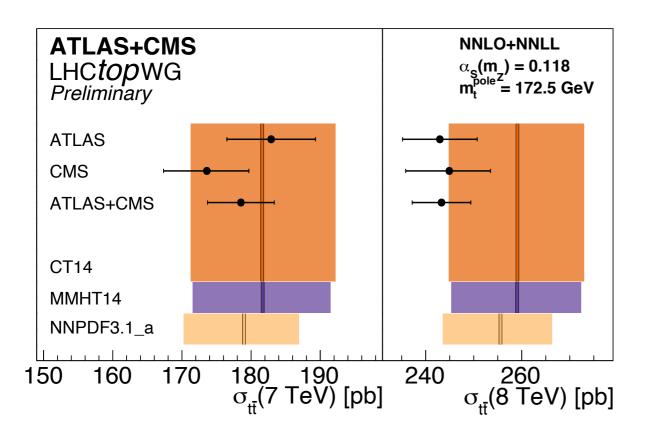
ATLAS	Uncerta	Uncertainty [%]	
Source	7 TeV	8 TeV	
JES central/forward balance	0.03	0.1	
Total uncertainty	3.5	3.2	

Correlation assumptions (3)

• Backgrounds:

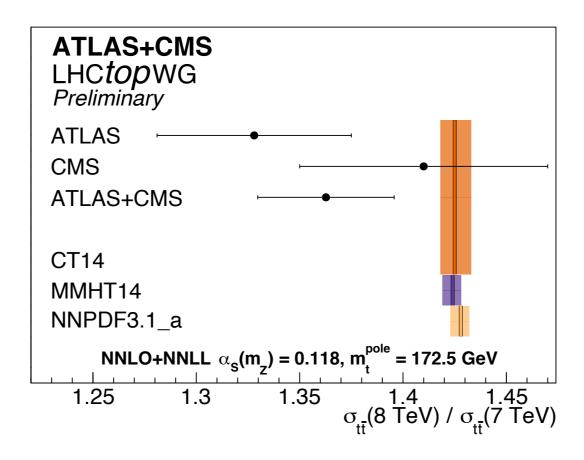
- CMS measurement uses slightly different tunes at 7 and 8 TeV, so that the backgrounds are only correlated to 90% between 7 and 8 TeV. This part is taken as mostly uncorrelated also to ATLAS, while the rest is taken as highly correlated
- Different nominal scale choices and behaviour in MadGraph (CMS) versus POWHEG (ATLAS). Still it should describe a similar effect, therefore half correlated
- Other generator related uncertainties
 - A lot of CMS sources need to be mapped to the merged ATLAS group.
 - Scanned simultaneously
- PDF uncertainties correlated eigenvector by eigenvector

Ambiguous signs


- In some cases, there is "some kind of correlation" but the sign is not clear
- E.g. ATLAS flavour composition and flavour dependent JES and CMS B fragmentation tune
- In general for uncertainties comparing some tune/generator A to B, where at least one of A or B is not the same for CMS and ATLAS
- Here, choose the sign that maximises the uncertainty on combined value

	***	9.59
ATLAS merged uncertainties	Value	CMS uncertainties
Lepton ID and energy resolution	HALF	Lepton ID and energy resolution
JES flavour composition/specific response	HIGH	JES flavour composition
	-LOW	<i>b</i> -jet fragmentation tune
	LOW	b-jet neutrino decay fraction
TD0 1-11'	HALF	JES: AbsoluteMPFBias 7 TeV
JES modelling	HALF	JES: AbsoluteMPFBias 8 TeV
IEC control/forward halance	HIGH	JES: RelativeFSR 7 TeV
JES central/forward balance	HIGH	JES: RelativeFSR 8 TeV
	HIGH	tW single top quark correlated
tW background	LOW	tW single top quark 7 TeV
	LOW	tW single top quark 8 TeV
	HIGH	Diboson correlated
Diboson	LOW	Diboson 7 TeV
	LOW	Diboson 8 TeV
tī scale choice	HALF	$t\bar{t}$ scale choice
tt scale choice	HALF	$t\bar{t}$ scale choice (extrapolation)
	LOW	Top-quark $p_{\rm T}$
	LOW	Top-quark $p_{\rm T}$ (extrapolation)
	-LOW	ME generator
$t\bar{t}$ generator	LOW	ME/PS matching
	LOW	ME/PS matching (extrapolation)
	-LOW	Colour reconnection
	-LOW	Underlying-event tune
Each PDF CT10 eigenvector	FULL	Each PDF CT10 eigenvector
Integrated luminosity	0.1	Integrated luminosity

Results



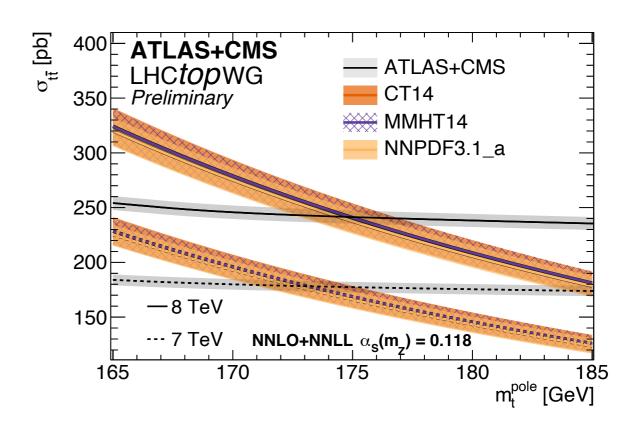
- Minimum chi2=1.6
- Very stable
- Correlation between
 7 and 8 TeV: 0.4 I
- Uncertainty impact evaluated by freezing parameters and repeating the fit

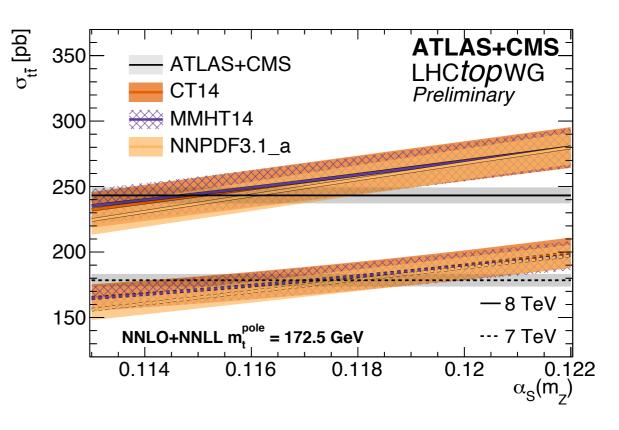
NNPDF3.I_a: special NNPDF3.I entirely without top data

Uncertainty	$\Delta \sigma_{t\bar{t}}$ (7 TeV) [%]	$\Delta \sigma_{t\bar{t}}$ (8 TeV) [%]
Trigger	0.6	0.5
Lepton (mis-)ID, isolation and energy	1.0	0.9
JES flavour composition	0.4	0.4
JES modelling	< 0.1	0.1
JES central/forward balance	0.2	0.2
<i>b</i> -jet (mis-)ID	0.4	0.4
Pile-up	0.2	0.2
tW background	0.8	0.6
Drell-Yan background	0.7	0.4
Diboson background	0.2	0.4
$t\bar{t}$ generator	0.8	0.8
$t\bar{t}$ scale choice	0.4	0.4
PDF	0.4	0.3
Integrated luminosity	1.7	1.7
Statistical	1.0	0.4
Total uncertainty	+2.7	+2.5
	-2.6	-2.4

$$\sigma_{t\bar{t}} (\sqrt{s} = 7 \text{ TeV}) = 178.5 \pm 4.7 \text{ pb}$$

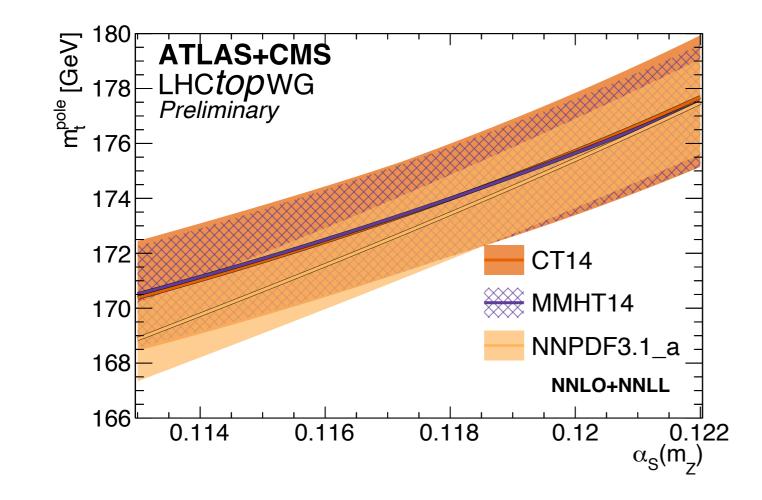
 $\sigma_{t\bar{t}} (\sqrt{s} = 8 \text{ TeV}) = 243.3^{+6.0}_{-5.9} \text{ pb},$




- Ratio not affected strongly by the choice of mt, alpha_s
- Determine ratio from results and correlation coefficient
- Predictions calculated correlating the corresponding individual PDF eigenvectors and scale choices
- Both the individual cross-sections and their ratio are in agreement with the SM prediction
 - 0.3 (7 TeV) , I.0 (8 TeV) and I.9 (ratio) sigma

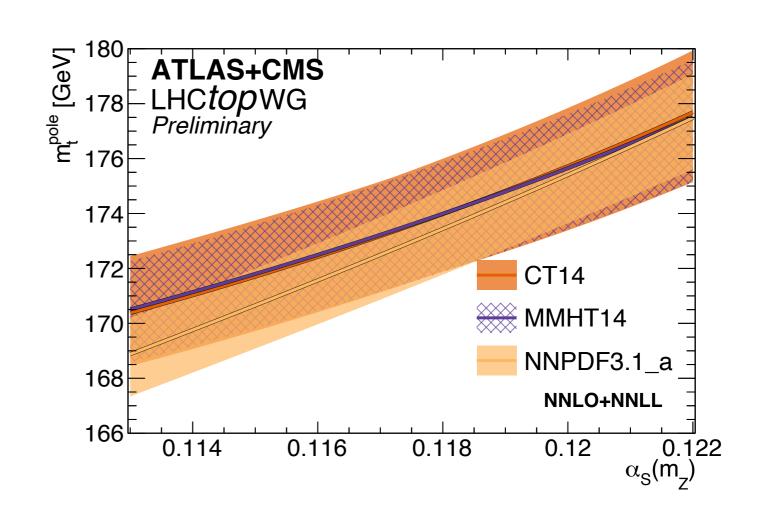
Top pole mass and α_s

- ullet Predicted cross-section depends strongly on top mass and $lpha_{\text{S}}$. The experimental dependence is mild.
- Dependence on m_t is different for ATLAS and CMS so fit 3 points (166.5 GeV, 172.5 GeV and 178.5 GeV) and get weight at each point. Interpolate in between.
- Theory dependence obtained from running top++ with various PDF sets for 10 mass points (at alpha_s = 0.118) and 5 α_s variations (at m_t = 172.5), using 4th order polynomial
- Chi2 | $\chi^2 = \frac{1}{1-\rho^2} \left(\Delta (7 \text{ TeV})^2 + \Delta (8 \text{ TeV})^2 2\rho \Delta (7 \text{ TeV}) \Delta (8 \text{ TeV}) \right)$, with $\Delta = \frac{\sigma_{t\bar{t}}(m_t^{\text{pole}}) \sigma_{t\bar{t}}^p(m_t^{\text{pole}}, \alpha_{\text{S}}(m_Z))}{s},$
- Repeat extraction for each PDF eigenvector/scale choice and determine final uncertainty using the prescription of corresponding PDF set



Final extraction result

- \bullet Not possible to extract m_t and α_S from one number at the same time
- But: measurement can give constraints on compatible choices
 - Scan one against the other
- NB: the plot is designed to be read both ways


PDF set	$m_t^{ m pole}$	$\alpha_{\rm S}(m_{\rm Z})$
	$(\alpha_{\rm S} = 0.118 \pm 0.001)$	$(m_t = 172.5 \pm 1.0 \text{ GeV})$
CT14	$174.0 \pm_{2.3}^{2.3} \text{ GeV}$	$0.1161 \pm 0.0030 \ \pm 0.0033$
MMHT2014	$174.0 \pm_{2.3}^{2.1} \text{GeV}$	$0.1160 \pm 0.0031 \atop 0.0030$
NNPDF3.1_a	$173.4 \pm ^{1.8}_{2.0} \text{ GeV}$	$0.1170 \pm 0.0021 \atop 0.0018$

Summary

• Finalised ATLAS+CMS combination of inclusive LHC run 1 top quark pair cross section measurements

- Combined results have about ~2.5% uncertainty; world's most precise:
 - 25% improvement for 7 TeV
 - 28% for 8 TeV and
 - 45% improvement for the ratio
- Top pole mass is competitive with other pole mass uncertainties (1.2%)

 \bullet Extracted α_{S} competitive with other measurements at top scales

