

Vniver§itat © València

V. Miralles^a, <u>M. Miralles López</u>^a, M. Moreno Llácer^a, A. Peñuelas^{a,b}, M. Perelló^a, M. Vos^a

^aIFIC, Universitat de València and CSIC, ^bU. Mainz, Prisma

Based on arXiv:2107.13917

Introduction

- Being the heaviest particle of the SM the top-quark is a good candidate for searching for new physics
- Its EW couplings are specially relevant in many extensions of the SM
- As the top-quark was not produced in LEP its EW sector could not be precisely measured until now
- The LHC data allows, finally, for precise measurements of this sector
- Here we present results of a global fit to top-quark EW couplings
- We used the most recent available data from the LHC (ATLAS and CMS), and also from LEP and Tevatron
- We include the QCD corrections at NLO on most of the observables used and the latest $pp \rightarrow t\bar{t}Z$ and $pp \rightarrow t\bar{t}\gamma$ differential cross-sections
- The fits have been performed using HEPfit [1910.14012]

2nd Dec 2021 | Marcos Miralles - LHC Top WG

Theoretical Framework

We use an EFT description to parametrise deviations from the SM

$$\mathscr{L}_{eff} = \mathscr{L}_{SM} + \frac{1}{\Lambda^2} \sum_{i} C_i O_i + \mathscr{O}\left(\Lambda^{-4}\right)$$

- The Wilson coefficients can be interpreted in terms of NP mediators
- We include Λ^{-2} terms from the **interference between the SM and D6**
- We also include Λ^{-4} terms arising from squaring the D6
- The effects of D8 operators, contributing to the same Λ^{-4} order, are omitted $\sigma = \sigma_{SM} + \underbrace{\frac{1}{\Lambda^2} \sum C_i O_i}_{SM \times D6} + \underbrace{\left(\frac{1}{\Lambda^2} \sum C_i O_i\right) \left(\frac{1}{\Lambda^2} \sum C_j O_j\right)}_{D6 \times D6} + \underbrace{O(1/\Lambda^4)}_{SM \times D8}$
- We only consider the EW two-fermion operators and ignore imaginary parts
- The four-fermion operators are ignored

Both fits are presented

EW top-quark EFT Basis

Left and right-handed couplings of the t- and b-quark to the Z	EW dipole operators
$\begin{array}{ll} O^{3}_{\varphi Q} & \equiv \frac{1}{2} \left(\bar{q} \tau^{I} \gamma^{\mu} q \right) \left(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \varphi \right) \\ O^{1}_{\varphi Q} & \equiv \frac{1}{2} \left(\bar{q} \gamma^{\mu} q \right) \left(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi \right) \\ O_{\varphi u} & \equiv \frac{1}{2} \left(\bar{u} \gamma^{\mu} u \right) \left(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi \right) \\ O_{\varphi d} & \equiv \frac{1}{2} \left(\bar{d} \gamma^{\mu} d \right) \left(\varphi^{\dagger} i \overleftarrow{D}_{\mu} \varphi \right) \end{array}$	$O_{uW} \equiv (\bar{q}\tau^{I}\sigma^{\mu\nu}u) \left(\varepsilon\varphi^{*}W_{\mu\nu}^{I}\right)$ $O_{dW} \equiv (\bar{q}\tau^{I}\sigma^{\mu\nu}d) \left(\varphi W_{\mu\nu}^{I}\right)$ $O_{uB} \equiv (\bar{q}\sigma^{\mu\nu}u) \left(\varepsilon\varphi^{*}B_{\mu\nu}\right)$ $O_{dB} \equiv (\bar{q}\sigma^{\mu\nu}d) \left(\varphi B_{\mu\nu}\right)$
Chromo magnetic dipole operators	Top/Bottom yukawa
Chromo magnetic dipole operators $O_{uG} \equiv (\bar{q}\sigma^{\mu\nu}T^{A}u) \left(\varepsilon\varphi^{*}G^{A}_{\mu\nu}\right)$ $O_{dG} \equiv (\bar{q}\sigma^{\mu\nu}T^{A}d) \left(\varphi G^{A}_{\mu\nu}\right)$	Top/Bottom yukawa $O_{u\varphi} \equiv (\bar{q}u) (\varepsilon \varphi^* \phi^{\dagger} \phi)$ $O_{d\varphi} \equiv (\bar{q}d) (\phi \phi^{\dagger} \phi)$

Rotation of Warsaw basis following [1802.07237] (LHC Top WG)

 $O^{1}_{arphi Q}
ightarrow O^{-}_{arphi Q} = O^{1}_{arphi Q} - O^{3}_{arphi Q}; \qquad \qquad O_{xB}
ightarrow O_{xZ} = -\sin heta_{W} O_{xB} + \cos heta_{W} O_{xW}$

We make use of the Warsaw Basis

- Linear Fit Λ^{-2} : 7 d.o.f.
- Quadratic Fit $\Lambda^{-2} + \Lambda^{-4}$: 10 d.o.f.
- Operators for these coefficients are included in the fit but limits are not reported since they are not competitive

Methods & Data

- Dependence of the observables calculated at NLO in QCD with the Monte Carlo generator MG5_aMC@NLO [JHEP 07 (2014) 079]
- **SMEFT@NLO** [arXiv:2008.11743] UFO model was used except for C_{bW} , $C_{\varphi tb}$, C_{bZ} and $C_{\varphi b}$ where the **TEFT_EW** [JHEP 05 (2016) 052] UFO model was used
- The fit is performed as a Bayesian statistical analysis of the model using the open source HEPfit [1910.14012]

Process	Observable	\sqrt{s}	$\int \mathcal{L}$	Experiment
$pp \to t\bar{t}H + tHq$	σ	$13 { m TeV}$	$140 {\rm ~fb^{-1}}$	ATLAS
$pp \to t\bar{t}Z$	$d\sigma/dp_T^Z$ (7 bins)	$13 { m TeV}$	$140 {\rm ~fb^{-1}}$	ATLAS
$pp \to t\bar{t}\gamma$	$d\sigma/dp_T^{\gamma}$ (11 bins)	$13 { m TeV}$	$140 {\rm ~fb^{-1}}$	ATLAS
$pp \rightarrow tZq$	σ	$13 { m TeV}$	$77.4 \ {\rm fb}^{-1}$	\mathbf{CMS}
$pp \rightarrow t\gamma q$	σ	$13 { m TeV}$	$36 {\rm ~fb^{-1}}$	CMS
$pp \to t\bar{t}W$	σ	$13 { m TeV}$	$36 {\rm ~fb^{-1}}$	\mathbf{CMS}
$pp \to t\bar{b} \text{ (s-ch)}$	σ	$8 {\rm TeV}$	$20 { m ~fb^{-1}}$	LHC
$pp \to tW$	σ	$8 {\rm TeV}$	$20 { m ~fb^{-1}}$	LHC
$pp \rightarrow tq \text{ (t-ch)}$	σ	$8 {\rm TeV}$	$20 { m ~fb^{-1}}$	LHC
$t \to Wb$	$F_0, \ F_L$	$8 {\rm TeV}$	$20 { m ~fb^{-1}}$	LHC
$p\bar{p} \rightarrow t\bar{b} \text{ (s-ch)}$	σ	$1.96 { m TeV}$	$9.7 { m ~fb^{-1}}$	Tevatron
$e^-e^+ \rightarrow b\bar{b}$	R_b , A_{FBLR}^{bb}	$\sim 91~{\rm GeV}$	202.1 pb^{-1}	LEP/SLD

included

2nd Dec 2021 Marcos Miralles - LHC Top WG

Sensitivity

$$\sigma = \sigma_{SM} + \sum_{i} \frac{\mathcal{C}_{i}}{\Lambda^{2}} \sigma_{i}^{(1)} + \sum_{ij} \frac{\mathcal{C}_{i}\mathcal{C}_{j}}{\Lambda^{4}} \sigma_{ij}^{(2)} + \mathcal{O}\left(\Lambda^{-4}\right)$$

- The observables and coefficients in red are not included
- The $pp \rightarrow t\bar{t}$ process is omitted in the fit in order to be consistent as it is used to reduce the dependence of $pp \rightarrow t\bar{t}X$ on Wilson coefficients that have not been included.

Results – Sensitivity Individual Constraints

- Good interplay between the parameters and chosen observables
- The differential cross sections (darker regions) provide the best constraints for some observables

Results – Complementarity btw. Observables

- Very good complementarity between the observables
- The global fit marginalised limit is quite close to the intersection of individual fits. The data set is diverse enough to avoid the existence of blind directions
- Watch out for: LEP in $C_{\varphi Q}^{-}$, $C_{\varphi Q}^{(3)}$; $t\bar{t}Z$ in C_{tZ} ; $t\bar{t}\gamma$ and Whel. in C_{tW}

Results – Global Fit

- The **constrains** of the linear (Λ^{-2}) global fit are similar to those of the quadratic $(\Lambda^{-2} + \Lambda^{-4} \text{ terms})$ global fit for most cases
- Estimation of the impact of correlations between the observables and the extension of our basis with 7 four-fermion operators C⁸_{tu}, C⁸_{td}, C^{1,8}_{Qq}, C^{3,8}_{Qq}, C⁸_{Qu}, C⁸_{Qd}, C⁸_{tq}, and C_{tG}
- Robust Limit: Envelope found from combining all the results
 - Effect of the 8 additional operators + $pp \rightarrow t\overline{t}$ at 13 TeV and Tevatron
 - Correlations between different observables (ansatz of non-published correlations has been estimated)
 - MC theory scale uncertainties in EFT parametrisations (max. 5% effect)

Compatibility with 0 within 2 σ and 95% probability bounds \pm 0.35 to $\pm 8~{\rm TeV^{-2}}$

Future Colliders – Prospects

Conclusions

- All the results are compatible with the SM with a 95% probability
- We find a reduction of the uncertainty of all the parameters of around a factor two with respect to our previous work [JHEP12(2019)098]
- LEP measurements provide tight bounds on several operators as the left-handed coupling $C_{\varphi Q}^{-}$ and $C_{\varphi Q}^{(3)}$
- The addition of the **differential cross sections** of $pp \to t\overline{t}Z$ and $pp \to t\overline{t}\gamma$ have an important effect on C_{tZ} and $C_{\varphi t}$
- The limits are quite **robust** even when we only consider linear terms, except for C_{bW} , $C_{\varphi tb}$, and C_{tZ}
- Adding important correlations between the observables does not dramatically change the results, but increasing the basis has an effect
- We find the most stringent bound on top EW couplings from an EFT including all relevant 2-fermions degrees of freedom (see [JHEP 04 (2019) 100], [JHEP 02 (2020) 131], [CMS-PAS-TOP-19-001])

BACKUP

Results – Differential Cross Section Effect

Results – Differential Cross Section Effect

Figure 12. Linear and quadratic parameterisations for each of the bins in the differential ttZ cross-section. The two most sensitive operators to this process, C_{tZ} and $C_{\varphi t}$, are shown.

Results – Differential Cross Section Effect

Figure 13. Linear and quadratic parameterisations for each of the bins in the differential $tt\gamma$ cross-section. The two most sensitive operators to this process, C_{tZ} and C_{tW} , are shown.

Complementarity btw. Observables

2nd Dec 2021 | Marcos Miralles – LHC Top WG

Limits on the Wilson Coefficients

C/Λ^2	Linear (95%)	% probability)	Lin.+Quad. (9)	(95% probability)	
$({\rm TeV^{-2}})$	Individual	Global-Baseline	Individual	Global-Baseline	Global-Robust
$C_{t\varphi}$	[-3.17, 3.47]	[-3.13, 3.63]	[-3.05, 4.05]	[-2.82, 4.92]	[-121.82, 62.82]
$C^{-}_{\varphi Q}$	[-0.038, 0.079]	[-2.84, 0.78]	[-0.038, 0.079]	[-2.42, 1.62]	[-2.84, 1.62]
$C^3_{\varphi Q}$	[-0.019, 0.040]	[-0.41, 1.39]	[-0.019, 0.040]	[-0.94, 0.81]	[-0.94, 1.39]
$C_{\varphi t}$	[-6.6, 1.8]	[-8.96, 0.96]	[-8.6, 1.5]	[-9.01, 1.11]	[-37.50, 21.50]
C_{tW}	[-0.30, 0.38]	[-0.26, 0.44]	[-0.28, 0.32]	[-0.19, 0.50]	[-0.35, 0.50]
C_{tZ}	[-0.82, 2.21]	[-0.75, 2.37]	[-0.39, 0.57]	[-0.35, 0.88]	[-2.43, 3.53]
$C_{\varphi tb}$		—	[-6.61, 6.71]	[-7.55, 7.05]	_
C_{bW}	_	_	[-0.47, 0.47]	[-0.91, 0.91]	_

Table 2. Allowed ranges of the Wilson coefficients with a probability of 95% expressed in TeV⁻² including only linear terms or linear and quadratic terms. We show, from left to right, the results of five fits: individual with linear terms, global baseline with linear terms, individual with linear and quadratic terms, global baseline with linear and quadratic terms and global robust limits. The robust result accounts for the effects of the correlations between the observables, the inclusion of further operators and the theoretical uncertainties on the parameterisations.

Experimental Correlations

Figure 5. Experimental correlation matrix used. The boxes in white correspond to the correlations published by the experiments for $t\bar{t}Z$, $t\bar{t}\gamma$ and W boson helicity fractions [30, 33, 44]. The rest of the entries correspond to our ansatz, as described in Section 8.3. Cells are filled if the correlation is higher than 10% in absolute value.

Future Colliders – Uncertainties

Inclusive cross sections and helicities

			LHC Unc.					HL-LHC Unc.					
Process	Measured (fb)	SM (fb)	theo		ex	p.		theo		exp			
			theo.	stat.	sys.	mod.	tot.	theo.	stat.	sys.	mod.	tot.	
$pp ightarrow t\bar{t}H + tHq$	640	664.3	41.7	90	40	70.7	121.2	20.9	19.4	8.6	35.4	41.3	
$pp ightarrow t ar{t} Z$	990	810.9	85.8	51.5	48.9	67.3	97.8	42.9	11.1	10.6	33.6	37.0	
$pp ightarrow t ar{t} \gamma$	39.6	38.5	1.76	0.8	1.25	2.16	2.62	0.88	0.17	0.27	1.08	1.13	
pp ightarrow tZq	111	102	3.5	13.0	6.1	6.2	15.7	1.75	2.09	0.98	3.1	3.87	
$pp ightarrow t\gamma q$	115.7	81	4	17.1	21.1	21.1	34.4	2	1.9	2.3	10.6	11.0	
$pp ightarrow t ar{t} W + EW$	770	647.5	76.1	120	59.6	73.0	152.6	38.1	13.1	6.5	36.5	39.4	
$pp ightarrow tar{b}$ (s-ch)	4900	5610	220	784	936	790	1454	110	35	42	395	399	
pp ightarrow tW	23100	22370	1570	1086	2000	2773	3587	785	49	89	1386	1390	
pp ightarrow tq (t-ch)	87700	84200	250	1140	3128	4766	5810	125	51	140	2383	2390	
F_0	0.693	0.687	0.005	0.009	0.006	0.009	0.014	0.003	0.0004	0.0003	0.004	0.004	
FL	0.315	0.311	0.005	0.006	0.003	0.008	0.011	0.003	0.0003	0.0002	0.004	0.004	

Table: The data shown is the inclusive cross-section written in fb for all the channels except, obviously, for the W Helicities (F_0 and F_L).

Future Colliders – Uncertainties

 $pp \rightarrow t\bar{t}Z$ differential cross section

	Measured (fb \cdot GeV $^{-1}$)	SM (fb \cdot GeV $^{-1}$)			LHC Und	С.		HL-LHC Unc.					
$pp ightarrow t \overline{t} Z$			theo	exp.						exp.			
			theo.	stat.	sys.	mod.	tot.	theo.	stat.	sys.	mod.	tot.	
p_T^Z : (0-40)	1.47	2.21	0.263	0.53	0.23	0.21	0.615	0.132	0.114	0.050	0.105	0.163	
p_T^Z : (40-70)	4.32	4.59	0.543	0.94	0.60	0.51	1.223	0.272	0.203	0.130	0.253	0.349	
p_T^Z : (70-110)	4.24	4.60	0.555	0.75	0.54	0.36	0.993	0.278	0.162	0.117	0.182	0.270	
p_T^Z : (110-160)	4.4	3.45	0.429	0.55	0.43	0.39	0.800	0.215	0.118	0.093	0.197	0.248	
p_T^{Z} : (160-220)	1.75	2.05	0.261	0.31	0.15	0.13	0.371	0.131	0.067	0.033	0.066	0.100	
p_T^Z : (220-290)	0.58	1.03	0.130	0.16	0.047	0.034	0.174	0.065	0.035	0.010	0.017	0.041	
p_T^Z : (290-400)	0.56	0.59	0.071	0.11	0.055	0.057	0.132	0.036	0.023	0.012	0.029	0.038	

Table: We show the unfolded bin contents for the absolute parton-level differential cross-section measurement.

Future Colliders – Uncertainties

$pp \rightarrow t \bar{t} \gamma$ differential cross section

			LHC Unc.					HL-LHC Unc.					
$ ho p ightarrow t \overline{t} \gamma$	$\rightarrow t\bar{t}\gamma$ Measured (fb · GeV ⁻¹) SM (fb · GeV ⁻¹)		theo	exp.					exp.				
			theo.	stat.	sys.	mod.	tot.	theo.	stat.	sys.	mod.	tot.	
p_T^{γ} : (20-25)	1.782	1.670	0.066	0.116	0.168	0.108	0.231	0.033	0.025	0.036	0.054	0.070	
$p_T^{\dot{\gamma}}$: (25-30)	1.328	1.183	0.040	0.089	0.052	0.092	0.138	0.020	0.019	0.011	0.046	0.051	
$p_T^{\dot{\gamma}}$: (30-35)	0.966	0.8663	0.0302	0.072	0.026	0.060	0.097	0.0151	0.016	0.0056	0.030	0.0342	
$p_T^{\dot{\gamma}}$: (35-40)	0.705	0.6616	0.0205	0.058	0.015	0.042	0.0733	0.0103	0.0125	0.0032	0.021	0.0248	
$p_T^{\dot{\gamma}}$: (40-47)	0.474	0.4790	0.0160	0.04	0.0096	0.048	0.0629	0.0080	0.0086	0.0021	0.024	0.0254	
$p_T^{\hat{\gamma}}$: (47-55)	0.333	0.3464	0.0094	0.031	0.0067	0.017	0.0360	0.0047	0.0067	0.0014	0.0085	0.0109	
$p_T^{\hat{\gamma}}$: (55-70)	0.221	0.2188	0.0056	0.019	0.0038	0.0081	0.0210	0.0028	0.0041	0.00082	0.0041	0.0058	
$p_T^{\hat{\gamma}}$: (70-85)	0.122	0.1286	0.0031	0.014	0.0026	0.0069	0.0158	0.0016	0.0030	0.00056	0.0035	0.0046	
$p_T^{\dot{\gamma}}$: (85-132)	0.060	0.06037	0.0017	0.005	0.0014	0.0068	0.0086	0.00084	0.0011	0.00029	0.0034	0.0036	
$p_T^{\dot{\gamma}}$: (132-180)	0.020	0.02373	0.00077	0.003	0.00044	0.00080	0.00314	0.00039	0.00065	0.000095	0.00040	0.00077	
$p_T^{\dot{\gamma}}$: (180-300)	0.009	0.00790	0.00028	0.00045	0.000085	0.0014	0.00144	0.00014	0.000097	0.000018	0.00068	0.00069	

Table: We show the unfolded bin contents for the absolute parton-level differential cross-section measurement.