Uli Haisch, MPI Munich

Overview of dark matter (DM) searches in the top sector

LHC TOP WG meeting, 03.12.21

Fabio asked for the following

measurement activities. In this context, we thought it could be

searches for them allow to test

- "[...] We also hold a "fun session" on topics that go beyond the core
- interesting to have a kind of "review" talk about tt+DM searches. [...]"

To have "fun", I will interpret "review" & "DM" rather loosely focusing on interesting top signatures, giving examples of BSM physics that

tt+ET,miss: simplified spin-0 DM model

SM Yukawa coupling

[see for instance ATLAS/CMS DM Forum, 1507.00966]

tt+ET,miss: DM signal vs. background

[UH, Pani & Polesello, 1611.09841]

reducible background: WW, WZ, ZZ & Z+jets

tt+ET,miss: background modelling

 $events/(300 \, fb^{-1})$

LO, narrow width approximation LO, off-shell decays NLO, narrow width approximation NLO, off-shell decays

in top decays. NLO QCD effects of O(10%)

To correctly model 21 events in exclusive fiducial region, very important to include off-shell effects

[Hermann & Worek, 2108.01089]

Off-shell & NLO QCD effects of O(few %) in case of leading SM background

tt+ET,miss: background suppression

C_{em} (GeV)

350

$C_{\rm em} = m_{T2} - 0.2 \left(200 \, {\rm GeV} - E_T^{\rm miss} \right)$

One possible variable to suppress backgrounds. Latest ATLAS & CMS searches use, depending on final state, combinations of observables such as E_{T,miss}, H_{T,sig,miss}, m_T, topness, m_{top,reclustered}, ...

tt+ET,miss: signal discrimination

[UH, Pani & Polesello, 1611.09841]

Pseudorapidity difference of two leptons $\cos\theta_{\parallel} = \tanh(\Delta\eta_{\parallel}/2)$ allows to discriminate between signal hypotheses

tW+ET,miss: simplified spin-0 DM model

SM Yukawa coupling

[see Pinna et al., 1701.05195; Plehn, Thompson & Westhoff, 1712.08065 for first studies]

tW+ET,miss: signal discrimination

[UH & Polesello, 1812.00694]

Angular correlations of leptons again allow to discriminate between signal hypotheses

Combined tX+ET,miss search strategy

 $2Ib+E_{T,miss}$ final state receives contributions from $t\bar{t}+E_{T,miss}$ & $tW+E_{T,miss}$ channel. To enhance sensitivity of search, design two signal regions $SR_{t\bar{t}}$ & SR_{tW} that target different production mechanisms

[UH & Polesello, 1812.00694]

Combined tX+ET,miss search strategy

 Invariant mass of b-jet in semileptonic top decay bounded by:

$$\sqrt{m_t^2 - m_W^2} \simeq 153 \,\mathrm{GeV}$$

 Events compatible with two semi-leptonic top decays can hence be selected by using:

 $m_{bl}^{t} = \min\left(\max\left(m_{l_{1}j_{a}}, m_{l_{2}j_{b}}\right)\right)$

[UH & Polesello, 1812.00694]

tX+ET,miss LHC Run 3 projections

Compared to standard SR_{tt} search, sensitivity of combined SR_{tt} & SR_{tw} analysis higher by around 20% (80%) at low (high) mediator masses

[UH & Polesello, 1812.00694]

tX+ET,miss HL-LHC projections

For $m_{\chi} = 1$ GeV, $g_{SM} = g_{DM} = 1$ & assuming 3 ab⁻¹ of 14 TeV LHC data, combined analysis leads to 95% CL limit of around 530 GeV on mediator mass

[UH & Polesello, 1812.00694]

Composite Higgs & DM

- A light elementary scalar is unnatural
- Possible solution is that Higgs is a bound state of a new strong sector. Description of theory changes above confinement scale of O(1 TeV) & Higgs mass is screened
- In analogy to QCD pions, Higgs arises as approximate Nambu-Goldstone boson (pNGB) & remains light
- No reason for Higgs to be alone. In fact, if stable, extra pNGB scalar x makes attractive DM candidates since light & weakly coupled

[see for instance Agashe, Contino & Pomarol, hep-ph/0412089; Frigerio et al., 1204.2808]

pNGB DM models

relevant interactions:

[see for example Balkin, Ruhdorfer, Salvioni & Weiler, 1809.09106]

Couplings of x determined by global symmetry & explicit breaking, but at least two

pNGB DM: direct detection bounds

[see for example Balkin, Ruhdorfer, Salvioni & Weiler, 1809.09106]

Due to momentum suppression direct detection limits easily avoided for new-physics scales Λ of O(I TeV)

pNGB DM: direct detection bounds

Derivative portal is only scalar DM-Higgs operator that satisfies constraints from spinindependent (SI) DM-nucleon cross section σ_{SI} once loop effects are considered

[UH, Polesello & Schulte, 2107.12389]

$$\sigma_{\rm SI} = \frac{c_m^2 m_N^4 f_N^2}{\pi m_h^4 (m_\chi + m_N)^2}$$

 $\sigma_{\rm SI} \lesssim 9 \cdot 10^{-47} \,\mathrm{cm}^2 \ (m_{\chi} = 100 \,\mathrm{GeV})$ $\Rightarrow |c_m| \lesssim 5 \cdot 10^{-3}$

pNGB DM: invisible Higgs decays

Γ

[UH, Polesello & Schulte, 2107.12389; ATLAS-CONF-2020-052]

$$V(h \to \chi \chi) \simeq \frac{v^2}{8\pi m_h} \left(\frac{m_h^2 c_d}{\Lambda^2} + c_m\right)^2$$

BR
$$(h \to \text{inv}) \simeq \frac{\Gamma(h \to \chi \chi)}{4 \,\text{MeV}} < 0.11$$

$$\Rightarrow \quad \frac{\Lambda}{\sqrt{c_d}} \gtrsim 1.7 \,\text{TeV}\,, \quad |c_m| \lesssim 5 \cdot 10^{-3}$$

pNGB DM: off-shell DM search strategies

If DM is not kinematically accessible in Higgs decay, can test pNGB DM models in vector-boson fusion (VBF) Higgs production plus E_{T,miss} & in tX+E_{T,miss} channels

[Ruhdorfer, Salvioni & Weiler, 1910.04170; UH, Polesello & Schulte, 2107.12389]

Constraints on derivative operator

[Higgs off-shell bounds from Ruhdorfer, Salvioni & Weiler, 1910.04170; UH, Polesello & Schulte, 2107.12389]

[Agryopoulos, Brandt & UH, 2109.13597]

Constraints on marginal operator

[Higgs off-shell bounds from Ruhdorfer, Salvioni & Weiler, 1910.04170; UH, Polesello & Schulte, 2107.12389]

[Agryopoulos, Brandt & UH, 2109.13597]

Unitarity violation small unless g_{SM} large and/or $s^{1/2} \gg 14$ TeV, but ...

[see for instance Maltoni et al., hep-ph/0106293; Farina et al., 1211.3736; UH & Polesello, 1812.00694]

still can ask ...

 χ

-

χ +? = finite

One possible solution

A aH[±]W coupling only exists in models that feature an extended Higgs sector

2HDM+a model

$\mathcal{L} \supset -\bar{Q}Y_u\tilde{H}_2 d_R + \bar{Q}Y_d H_1 u_R - ib_P P H_1^{\dagger} H_2 - iy_{\chi} P \bar{\chi} \gamma_5 \chi + \text{h.c.}$

states: h, H, A, H^{\pm}, a h is SM-like for mostly P $\cos(\beta - \alpha) \simeq 0$ for small θ

[lpek et al. 1404.3716; No, 1509.01110; Goncalves et al., 1611.04593; Bauer et al., 1701.07427]

2HDM+a model: resonant ET,miss signatures

Mono-Z, mono-Higgs & tW+ $E_{T,miss}$ channels are subleading in simplified spin-0 DM models. In 2HDM+a model, presence of H, A, & H[±] allows for resonant production of these mono-X signatures

[Goncalves et al., 1611.04593; Bauer et al., 1701.07427; Pani & Polesello, 1712.03874]

W

Constraints on 2HDM+a model

[Agryopoulos, Brandt & UH, 2109.13597]

Models with mono-top signatures

DM models with flavour-changing vector or scalar interactions

[see for example Andrea, Fuks & Maltoni, 1106.6199; Aguilar Saavedra et al., 1306.0572]

Models with vector-like top-quark partners without DM candidate

Simplified models for B anomalies

 $\lambda_{ij}^q \lambda_{\alpha\beta}^l \left(C_T \left(\bar{Q}_L^i \gamma_\mu \sigma^a Q_L^j \right) (\bar{L}_L^\alpha \gamma^\mu \sigma^a L_L^\beta) + C_S \left(\bar{Q}_L^i \gamma_\mu Q_L^j \right) (\bar{L}_L^\alpha \gamma^\mu L_L^\beta) \right)$

[see for instance Buttazzo, Greljo, Isidori & Marzocca, 1706.07808]

Model	Mediator	$b \rightarrow s$	$b \rightarrow c$
Colorless vectors	B' = (1, 1, 0)	\checkmark	X
	W' = (1, 3, 0)	×	\checkmark
Scalar leptoquarks	$S_1 = (\bar{3}, 1, 1/3)$	×	\checkmark
	$S_3 = (\overline{3}, 3, 1/3)$	\checkmark	×
Vector leptoquarks	$U_1 = (3, 1, 2/3)$	\checkmark	\checkmark
	$U_3 = (3, 3, 2/3)$	\checkmark	×

 $b \rightarrow s$ ($b \rightarrow c$) anomalies alone can be accommodated by several simple single-mediator models

Simplified models for B anomalies

 $\lambda_{ij}^q \lambda_{\alpha\beta}^l \left(C_T \left(\bar{Q}_L^i \gamma_\mu \sigma^a Q_L^j \right) (\bar{L}_L^\alpha \gamma^\mu \sigma^a L_L^\beta) + C_S \left(\bar{Q}_L^i \gamma_\mu Q_L^j \right) (\bar{L}_L^\alpha \gamma^\mu L_L^\beta) \right)$

[see for instance Buttazzo, Greljo, Isidori & Marzocca, 1706.07808]

Model	Mediator	$b \rightarrow s$	$b \rightarrow c$
Colorless vectors	B' = (1, 1, 0)	\checkmark	×
	W' = (1, 3, 0)	×	\checkmark
Scalar leptoquarks	$S_1 = (\bar{3}, 1, 1/3)$	×	\checkmark
	$S_3 = (\bar{3}, 3, 1/3)$	\checkmark	×
Vector leptoquarks	$U_1 = (3, 1, 2/3)$	\checkmark	\checkmark
	$U_3 = (3, 3, 2/3)$	\checkmark	×

U1 singlet vector leptoquark (LQ) is only single-mediator model that can explain both sets of anomalies

Vector leptoquark (LQ) model for B anomalies

 $\mathcal{L} \supset \frac{g_U}{\sqrt{2}} \left[\beta_L^{ij} \bar{Q}_L^{i,a} \gamma_\mu L_L^j + \beta_R^{ij} \bar{d}_R^{i,a} \gamma_\mu \ell_R^j \right] U^{\mu,a} + \text{h.c.},$ $\left|\beta_L^{22}\right| \lesssim \left|\beta_L^{32}\right| \ll \left|\beta_L^{23}\right| \lesssim \left|\beta_L^{33}\right| = \mathcal{O}(1)$

Para	meters	Branching ratios			
β_L^{33}	eta_L^{23}	$BR\left(U \to b\tau^+\right)$	$\mathrm{BR}\left(U\to t\bar{\nu}_{\tau}\right)$	$BR\left(U \to s\tau^+\right)$	$\mathrm{BR}\left(U \to c \bar{\nu}_{\tau}\right)$
1	0	51%	49%	0%	0%
1	1	25%	22%	25%	27%

3rd generation vector LQ: LHC signatures

Flavour structure needed to explain $b \rightarrow c$ anomalies singles out $pp \rightarrow \tau^+\tau^-$, $pp \rightarrow b\tau \& pp \rightarrow tv$ as most interesting channels. In case of 33 & 23 mixing both $2 \rightarrow 2 \& 2 \rightarrow 3$ processes relevant. Because two topologies lead to final states with very different kinematic features, it is essential to develop two separate search strategies for them

Comparison of LQ search strategies

Summary

- Top physics offers a rich spectrum of processes such as top pair, singletop & mono-top production to look for DM. Searches for these final states allow to set relevant constraints for instance on simplified spin-0 DM models, pNGB DM & 2HDM+a model
- Channels like mono-top, ttZ, tt, four-top, etc. also provide test of other BSM scenarios such as vector-like fermions, leptoquarks, heavy Higgses, etc. that are not necessarily connected to DM — ttZ discussed in backup

Heavy Higgs effects in ditop production

Spin-0 ditop resonances interfere maximal with SM background, which leads to a peakdip structure in $m_{t\bar{t}}$ invariant mass spectrum

[see for instance Dicus et al., hep-ph/9404359; Frederix & Maltoni, 0712.2355; Craig et al., 1504.04630]

Heavy Higgs effects in ditop production

Compared to parton-level spectra, reconstructed distributions are more strongly distorted due limits detector resolution. As a result, difficult to constrain spin-0 ditop resonances

H decays in alignment limit of 2HDM

Interesting/unexplored H, A search channels

Kinematics of H, A contribution to ttZ

[UH & Polesello, 1807.07734]

if kinematically allowed, H,A are preferentially on-shell

$$\Delta m = m_{t\bar{t}Z} - m_{t\bar{t}} \simeq M_H - M_A$$

 $p_{T,Z}^{\max} \simeq \frac{1}{2M_H} \sqrt{\left(M_H^2 - M_A^2 - M_Z^2\right)^2 - 4M_A^2 M_Z^2}$

Kinematics of H, A contribution to tTZ

ttZ: signal vs. backgrounds

ttZ: LHC exclusions in M_H-M_A plane

tīZ: LHC exclusions in M_H -tan β plane

Comparison of bounds from top final states

- UH & Polesello, 1807.07734
- ----- ATLAS, 1807.11883
- Gori et al., 1602.02782
- ••••• ATLAS, 1707.06025

shown limits based on different choices of $M_H \& M_{H^{\pm}}$, so plot is only meant to guide the eye

Combined tX+ET,miss search strategy

	SR _{tī}	\mathbf{SR}_{tW}	
N_l	$= 2, p_{T,l_1} > 25 \text{GeV}, p_{T,l_2} > 20 \text{GeV}, \eta_l < 2.5$		
m_{ll}	> 20 GeV, Z-boson veto for opposite-sign leptons		
N_b	$> 0, p_{T,b} > 30 \text{GeV}, \eta_b < 2.5$		
m_{T2}	> 100 GeV		
m_{bl}^{t}	< 160 GeV	> 160 GeV $N_j = 1$	
$ \Delta\phi_{min} $	> 0.8	> 0.8	
$ \Delta\phi_{\rm boost} $	< 1.2	< 1.2 n/a	
M _{scal}	n/a < 500 GeV		
C _{em}	> 200 GeV	> 200 GeV > 200 GeV	
$ \cos \theta_{ll} $	shape fit	shape fit shape fit	

[UH & Polesello, 1812.00694]

Existing spin-0 simplified DM bounds

[plots from ATL-PHYS-PUB-2021-006 & similar results by CMS]

tX+ET,miss LHC Run 3 projections

For $m_{\chi} = 1$ GeV, $g_{SM} = g_{DM} = 1$ & assuming 300 fb⁻¹ of 14 TeV LHC data, combined analysis leads to 95% CL limit of around 410 GeV on mediator mass

[UH & Polesello, 1812.00694]

Spin-0 simplified DM: tX+ET,miss vS. j+ET,miss

[based on UH & Polesello, 1812.00694 & 1812.08129]

Spin-0 simplified DM: tX+ET,miss VS. j+ET,miss

[based on UH & Polesello, 1812.00694 & 1812.08129]

pNGB DM: indirect detection bounds

 $\frac{\Omega_{\chi} h^2}{0.12} \simeq \frac{3 \cdot 10^{-26} \,\mathrm{cm}^3/\mathrm{s}}{\sum_{X} \langle \sigma v \rangle_X}$

$$\langle \sigma v \rangle_b \propto \left| \frac{1}{4m_{\chi}^2 - m_h^2} \left(\frac{4m_{\chi}^2 c_d}{\Lambda^2} + c_m \right) \right|^2$$

s-wave DM annihilation into SM particles. For light DM, resonant bottom contribution dominant. Above threshold, DM relic density $\Omega_X h^2$ set by annihilation to W, Z, h & t pairs

pNGB DM: tX+ET,miss search strategy

 SR_1 $E_T^{\rm miss} > 550 \,{\rm GeV}$ $m_T^\ell > 180 \,\mathrm{GeV}$ topness > 8 $\ell, 2b$ $m_{\rm top}^{\rm reclustered} > 150 \,{\rm GeV}$ $H_T^{\rm miss} > 15$ • • • SR_3 SR_2 $m_{b\ell}^t < 160 \,\mathrm{GeV}$ $E_T^{\text{miss}} > 550 \,\text{GeV}$ $2\ell, b$ $m_{T_2} > 100 \,{\rm GeV}$ • • •

[UH, Polesello & Schulte, 2107.12389]

targets $t\bar{t}+E_{T,miss}$ production with semi-leptonic W decays

targets tīt+E_{T,miss} production with fully-leptonic W decays

 $egin{aligned} m_{b\ell}^t > 160 \, {
m GeV} \ E_T^{
m miss} > 350 \, {
m GeV} \ m_{T_2} > 170 \, {
m GeV} \ M_{
m scal} < 500 \, {
m GeV} \end{aligned}$

• • •

targets tW+E_{T,miss} production with fullyleptonic W decays

All single-t plus $E_{T,miss}$ signals involve b \rightarrow tWS subprocess in simplified scalar DM models. Corresponding s-wave amplitude a₀ grows with partonic centre-of-mass (CM) energy E_{CM}

[see for instance Maltoni et al., hep-ph/0106293; Farina et al., 1211.3736; UH & Polesello, 1812.00694]

$$\Rightarrow |a_0| = \frac{|V_{tb}^*|}{24\pi} \frac{y_t}{v} g_{\rm SM} \hat{E}_{\rm CM}$$

$|a_0| = \frac{|V_{tb}^*|}{2\Delta\pi} \frac{y_t}{n} g_{\rm SM} \hat{E}_{\rm CM} \implies$

Imposing that $|a_0| < 1$ & identifying $\Lambda \simeq \hat{E}_{CM}$, one can estimate cut-off scale Λ where perturbative unitarity is lost. To make amplitude well-behaved additional particles/couplings have to appear at or before Λ

[UH & Polesello, 1812.00694]

$$\Lambda \simeq \frac{24\pi}{|V_{tb}^*|} \frac{v}{y_t} \frac{1}{g_{\rm SM}} \simeq \frac{18.6 \,{\rm TeV}}{g_{\rm SM}}$$

Fraction of single-t plus E_{T,miss} events with E_{CM} in multi-TeV range negligible (i.e. far below 1%) at LHC energies. Predictions not plagued by artefacts due to unitarity violation in simplified spin-0 DM models

[UH & Polesello, 1812.00694]

UV finiteness channel by channel

s-channel

t-channel

tW associated

 χ

 χ

W

tW+ET,miss signal discriminants

[Pani & Polesello, 1712.03874]

$$m_T^{\ell} = 2 \left| \vec{p}_T^{\ell} \right| \left| \vec{p}_T^{\text{miss}} \right| \left(1 - \cos \Delta \phi_{\vec{p}_T^{\ell} \vec{p}_T^{\text{miss}}} \right)$$

tW+ET,miss signal discriminants

[Pani & Polesello, 1712.03874]

$$m_T^{\ell} = 2 \left| \vec{p}_T^{\ell} \right| \left| \vec{p}_T^{\text{miss}} \right| \left(1 - \cos \Delta \phi_{\vec{p}_T^{\ell} \vec{p}_T^{\text{miss}}} \right)$$

tW+ET,miss signal discriminants

[Pani & Polesello, 1712.03874]

Constraints on 2HDM+a model

[Agryopoulos, Brandt & UH, 2109.13597]

Kinematic distributions of bt signal

Kinematic distributions of bt signal

 m_T^{τ} [GeV]

[UH & Polesello, 2012.11474]

 m_T^{τ} [GeV]

Kinematic distributions of bt signal

[UH & Polesello, 2012.11474]

 E_{T}^{miss} [GeV]

Mono-top distributions

events / 25 GeV/ 3 ab⁻¹

 $I I I \bigcirc A \land T \bigcirc I : - miss$

Mono-jet distributions

events / 50 GeV/ 3 ab⁻¹

 $\mathbf{H} = \mathbf{H} =$

bt constraints from $2 \rightarrow 2 \& 2 \rightarrow 3$ processes

Comparison of LQ search strategies

Comparison of LQ search strategies

Prospects of LQ search strategies

[UH & Polesello, 2012.11474; Cornella et al., 2103.16558]

