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Introduction
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LHC produces  proton collisions per second: huge complex environment!𝒪(109)
Context: hadronic collisions at the Large Hadron Collider

419/11/2021

(from P. Skands and F. Krauss)

Simulation of the full event is very 
intensive and requires lots of 

computing power
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All steps can be computer-intensive: how to accelerate the process?

Toolchain for event generation

519/11/2021

1. Hard matrix element generation (Les Houches event) 

2. Parton shower to account for soft radiation 

3. Hadronization effects, pile-up, etc. 

4. Detector simulation (fast with Delphes, or full with 
dedicated tool e.g. GEANT4) 

5. Extract useful physical observables from Root files 
produced after step 4

With  events, a bottleneck𝒪(1M)
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Main idea: train with a small dataset, use machine 
learning networks to learn the underlying distribution 

and generate for free a much larger dataset

The machine learning approach to event generation
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Since 2018, many papers have approached event generation with machine learning
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Abstract Machine Learning is a powerful tool to reveal

and exploit correlations in a multi-dimensional parameter

space. Making predictions from such correlations is a highly

non-trivial task, in particular when the details of the under-

lying dynamics of a theoretical model are not fully under-

stood. Using adversarial networks, we include a priori known

sources of systematic and theoretical uncertainties during the

training. This paves the way to a more reliable event classifi-

cation on an event-by-event basis, as well as novel approaches

to perform parameter fits of particle physics data. We demon-

strate the benefits of the method explicitly in an example

considering effective field theory extensions of Higgs boson

production in association with jets.

1 Introduction

The application of multi-variate analysis (MVA) techniques

and machine learning have a long-standing history in anal-

yses in particle physics and beyond. In the context of parti-

cle physics, machine learning-based approaches are typically

employed when the expected signal count is small compared

to the expected background contribution, thereby challenging

a more traditional cut-and-count analysis to reach sufficient

discriminating power to separate signal from backgrounds.

For instance, the recent observations of top quark-associated

Higgs production by CMS [1] and ATLAS [2] heavily rely

on multi-variate approaches. But machine learning has also

been considered in different contexts. The power of MVAs

in searches for new physics is that they adapt to correlations

in particle final states in order to map out relations between

theoretical input parameters (the Lagrangian) and the output,
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b e-mail: peter.galler@glasgow.ac.uk

c e-mail: philip.coleman.harris@cern.ch
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e.g. the physical final state given by a particular radiation pro-

file observed in a detector [3–31].

Machine learning approaches come into their own when

there is insufficient knowledge of the dynamics that connect

input and output, or in cases where there is no concrete model

at all. This forms the basis of applications of machine learning

approaches to stock trading and face or pattern recognition,

where comparably effortless predictions need to be made on

short timescales. This is qualitatively different for particle

physics applications where the underlying Standard Model of

Particle Physics (SM) is well-established. Connecting theo-

retical (not necessarily physical) input parameters with actual

measurements is not only possible, but sets the baseline of

the observed success of the SM over orders of magnitude.

Of course, these strategies, which are supported by factori-

sation principles [32,33] at the price of associated uncertain-

ties in perturbation theory, generalise to interactions beyond

the SM. Therefore, the most adapted approach to classifying

experimental observations (e.g. discriminating between sig-

nal and background) is using the theoretical model itself by

employing its S-Matrix as an observable. This is known as

the matrix-element method [34] and ATLAS and CMS have

used these techniques in Refs. [35,36]. This approach can

be extended to the full particle-level as discussed in Refs.

[37–40].

The downside of such methods is that they require exten-

sive computational resources and quick event-by-event selec-

tion is not possible without further simplifying assumptions.

These shortcomings motivate MVAs as interpolating tools

whose sensitivity will be bounded by the sensitivity that could

be achieved by a particle-level matrix element method.

Theoretical uncertainties are inherent to both the matrix

element method as well as the multivariate techniques as the

underlying Monte Carlo (MC) tool chain will be plagued by

a range of largely unphysical parameter choices (e.g. renor-

malisation, factorisation and shower scales). MVAs need to

be trained on MC output, at least for constraining models of
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Abstract

Event generation for the LHC can be supplemented by generative adversarial networks,

which generate physical events and avoid highly inefficient event unweighting. For top

pair production we show how such a network describes intermediate on-shell particles,

phase space boundaries, and tails of distributions. In particular, we introduce the maxi-

mum mean discrepancy to resolve sharp local features. It can be extended in a straight-

forward manner to include for instance off-shell contributions, higher orders, or approx-

imate detector effects.
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1 Introduction
First-principle simulations are a key ingredient to the ongoing success of the LHC, and they

are crucial for further developing it into a precision experiment testing the structure of the

Standard Model and its quantum field theory underpinnings. Such simulations of the hard

scattering process, QCD activity, hadronization, and detector effects are universally based on
1
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Abstract

The generation of unit-weight events for complex scattering processes presents a

severe challenge to modern Monte Carlo event generators. Even when using so-

phisticated phase-space sampling techniques adapted to the underlying transition

matrix elements, the e�ciency for generating unit-weight events from weighted

samples can become a limiting factor in practical applications. Here we present

a novel two-staged unweighting procedure that makes use of a neural-network

surrogate for the full event weight. The algorithm can significantly accelerate the

unweighting process, while it still guarantees unbiased sampling from the cor-

rect target distribution. We apply, validate and benchmark the new approach in

high-multiplicity LHC production processes, including Z/W+4 jets and tt̄+3 jets,

where we find speed-up factors up to ten.
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Two networks competing: generator produces fake data, discriminator distinguishes 
between real (training) input data and fake (produced by the generator) data 

 game theory where the generator learns the underlying (input) distribution⇒

What is a generative adversarial network (GAN)?

719/11/2021

GAN framework

2

Generator

Neural network model

Optimum = Nash equilibrium

Art forger analogy

Generator (art forger): Try creating fake paintings that look authentic 

Discriminator (art historian): Check paintings and try to catch the 
forgery 

Training: “Catch me if you can” game between the art forger and the art 
historian 

Success: Painted forgeries are so good that the art historian has at most 

a 50% guess ratio  The forger creates new work of the same style⇒
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Need first to assess whether we can create a qGAN for event generation: proof-of-concept! 

Can we also improve the state-of-the-art qGAN that already exist for other purposes?

Goal: proof-of-concept of quantum GAN

819/11/2021

Can we use quantum technologies to create an enhanced GAN?

• Can a quantum GAN (qGAN) be faster than a classical GAN?  quantum supremacy? 

• Would a qGAN have less parameters? 

• Would energy consumption be reduced on a quantum architecture?

⇔
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Quantum computing 
in a nutshell
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Quantum NOT gate                           

Pauli Z gate                                       

Hadamard gate                               

X |0⟩ = |1⟩, X |1⟩ = |0⟩

X |0⟩ = |0⟩, X |1⟩ = − |1⟩

X |0⟩ =
1

2
( |0⟩ + |1⟩)

Bits and qubits (digital quantum computer)

From 0 and 1 to  and : one-qubit state  as a superposition|0⟩ |1⟩ |ψ⟩

1019/11/2021 Quantum machine learning for event generation – Julien Baglio, CERN TH QCD seminar

More qubits: e.g. bit 5 can be represented by a three-qubit state |101⟩

Boolean operator  Unitary matrices (gates)→

Christian Bauer
Quantum Computing for Colliders

A very short quantum computing primer

Every state is represented by qubits. Examples are

fa = |0⟩ , fb = |1⟩ , |5⟩ = |101⟩ , true = |0⟩ , false = |1⟩

We operate on these states with unitary operations (matrices)

U
<latexit sha1_base64="TmU/DqUWarUyx8hwXKkk/PJYunc="></latexit>

U
<latexit sha1_base64="i43LZxeJLTWqqn/LEhEJavYh2PE="></latexit>

2x2 matrix U
on single qubit

4x4 matrix U
on pair of qubits

Can perform controlled operations

U
<latexit sha1_base64="JRusV3TkVpJFRXK9o9i30g6IFGA="></latexit>

= U ⌦ |0i h0|
<latexit sha1_base64="1ozER/XC4/Z2o+Q77tCeVWG6Qb0="></latexit>

= U ⌦ |1i h1|
<latexit sha1_base64="fyGWTJGhgyhUQ4KQ8cC924gNXAE="></latexit>

•
U

<latexit sha1_base64="eS2kCgvqGVAMBTCF8h9NmLAmU1o="></latexit>

All Unitary operations can be built out of a very small set of basic operations

Marat Freytsis
Effective uses of quantum computing for HEP

Some commons one-qubit gates:



Gates and circuits
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Important two-qubit gate: controlled-NOT (CNOT)
• Qubit 1 is : do nothing on qubit 2 

• Qubit 1 is : apply one-qubit gate NOT on qubit 2

|0⟩
|1⟩

Create entanglement
 |0⟩

|0⟩ : Bell state=
1

2
( |00⟩ + |11⟩)

• Important remark: circuits are unitary  quantum algorithms are invertible 

• At the end of a circuit, measurement is performed: build expectation values

⇒
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Quantum generator 
for generative 
adversarial networks
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Hybrid approach for a qGAN
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qGAN framework

3

Optimum = Nash equilibrium

GAN framework

2

Generator

Neural network model

Optimum = Nash equilibrium

Classical setup: Hybrid quantum-classical setup:

Optimization of the calculation: 
Only the generator becomes quantum



Model for the quantum layer: styled qGAN
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Quantum network: a series of quantum layers with rotation gates and entanglement operators

|0i Ry Rz Ry Rz

Uent

. . . Ry

|0i Ry Rz Ry Rz . . . Ry

...
...

...
...

...

|0i Ry Rz Ry Rz . . . Ry

1 layer

1

Ry = exp (−i
θ
2

σy), Rz = exp (−i
θ
2

σz)
1 observable = 1 qubit

 set of controlled rotations for entanglementUent

Novelty of our network:  
the noise is inserted in every gate and 
not only in the initial quantum state

Circuit implemented in Python with qibo [S. Efthymiou et al., arXiv:2009.01845] for quantum simulation and 
qiskit [G. Aleksandrowicz et al., code on Zenodo] for hardware deployment on IBM Q

data reuploading

https://arxiv.org/abs/2009.01845
https://doi.org/10.5281/zenodo.2562111
https://arxiv.org/abs/2009.01845
https://doi.org/10.5281/zenodo.2562111


Latent dimension and encoding of the observables
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Latent dimension: dimension of the noise vector  inserted in the circuit 
 
Parameter tuning: each gate with tuneable parameters 

ξ( j)

ϕ( j)
g

a key hyperparameter

here comes the training

, simple linear parameterization of angle Ri
y,z(ϕ(i)

g , ξ( j)) = Ry,z(ϕi
gξj + ϕi+1

g ) θ

Measure expectation values: perform N measurements (shots) of the final 
quantum state of the circuit, building ⃗x fake = − [⟨σ1

z ⟩, ⟨σ2
z ⟩, …, ⟨σ1

n⟩]



Classical discriminator network
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Use deep convolutional neural network with 7 main layers

• 1 input layer: Take n inputs (data), dense 
nodes fully connected to get an output of 
high dimensionality 

• 4 convolution layers with 64, 32, 16, 8 
filters (convolution matrices), using a ReLU 
activation function 

• 1 flatten layer: One-dimensional fully 
connected layer of data 

• 1 activation layer: output the binary 
classification using a sigmoid activation 
function

Flattened

Sigm
oid layer

Convolution layers (ReLU)

…

Reshape

input

fake

real
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Use deep convolutional neural network with 7 main layers

• 1 input layer: Take n inputs (data), dense 
nodes fully connected to get an output of 
high dimensionality 

• 4 convolution layers with 64, 32, 16, 8 
filters (convolution matrices), using a ReLU 
activation function 

• 1 flatten layer: One-dimensional fully 
connected layer of data 

• 1 activation layer: output the binary 
classification using a sigmoid activation 
function

ReLU: f(x) = { x if x ≥ 0
αx if x < 0

, α = 0.2 Sigmoid: f(x) =
1

1 + e−x

Flattened

Sigm
oid layer

Convolution layers (ReLU)

…

Reshape

input

fake

real



Training procedure: Nash equilibrium
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Training: Adapt alternatively the quantum generator  and the 

classical discriminator  [  and  input samples for the two networks]

G(ϕg, z)
D(ϕd, x) z x

Mathematical tool: binary cross-entropy for the loss functions

• Generator loss function: 
 

• Discriminator loss function: 
ℒG(ϕg, ϕd) = − 𝔼z∼pnoise(z)[log(D(ϕd, G(ϕg, z))]

ℒD(ϕg, ϕd) = 𝔼z∼preal(z)[log(D(ϕd, z)] + 𝔼z∼pnoise(z)[log(1 − D(ϕd, G(ϕg, z))]
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 and min
ϕg

ℒG(ϕg, ϕd) max
ϕd

ℒ(ϕg, ϕd)

Training: Adapt alternatively the quantum generator  and the 

classical discriminator  [  and  input samples for the two networks]

G(ϕg, z)
D(ϕd, x) z x

Mathematical tool: binary cross-entropy for the loss functions

• Generator loss function: 
 

• Discriminator loss function: 
ℒG(ϕg, ϕd) = − 𝔼z∼pnoise(z)[log(D(ϕd, G(ϕg, z))]

ℒD(ϕg, ϕd) = 𝔼z∼preal(z)[log(D(ϕd, z)] + 𝔼z∼pnoise(z)[log(1 − D(ϕd, G(ϕg, z))]

Game theory: min-max two-player game to reach Nash equilibrium 



Training procedure: gradient descent
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For the training of the styled qGAN: ADADELTA stochastic gradient descent method 
with an initial learning rate 0.5 (generator) and 0.1 (discriminator) [M. Zeiler, arXiv:1212.5701]

Find the Nash equilibrium: update the parameters  with gradient descent(ϕg, ϕd)

,  with ϕi
g,d → ϕi

g,d + δϕi
g,d δϕi

g,d = − ηgrϕi
g,d

grϕi
g,d

=
∂ℒ

∂ϕi
g,d

learning rate: a key hyperparameter

https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1212.5701


How to compare generated samples with real samples?
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Use the Kullback-Leibler divergence: DKL(P | |Q) = ∑
x

P(x)log ( P(x)
Q(x) )

Main idea: with  reference distribution, Q DKL = 0 ⇔ P ≡ Q

The KL divergence is the difference between the information entropy of  
and the cross entropy of  with 

P
P Q



Validation: 1D gamma distribution

6

Training: 104 samples

styled qGAN validation: 1D and 3D-gaussian examples
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Assessing the validity of the approach: train and test on known distribution

With one qubit, one layer, using 100 bins: 1D Gamma function pγ(x, α, β) = xα−1 e−x/β

βαΓ(α)
, α = β = 1

• Pre-processing of the data to fit samples in [-1;1] 

• Train on 104 samples until convergence is reached, 
perform hyperparameter optimization 

• Use generator to generate 104 and 105 samples to 
demonstrate reproducibility and data augmentation



styled qGAN validation: 1D and 3D-gaussian examples
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Now entanglement is necessary

Test whether the qGAN captures correlations: train on 3D Gaussian function 

, with p( ⃗x ) ∝ exp [−
1
2

( ⃗x − Σ)TΣ−1( ⃗x − ⃗μ )] Σ =
0.5 0.1 0.25
0.1 0.5 0.1

0.25 0.1 0.5
, ⃗μ = (0,0,0)
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, with p( ⃗x ) ∝ exp [−
1
2

( ⃗x − Σ)TΣ−1( ⃗x − ⃗μ )] Σ =
0.5 0.1 0.25
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styled qGAN validation: 1D and 3D-gaussian examples
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Now entanglement is necessary

Test whether the qGAN captures correlations: train on 3D Gaussian function 

, with p( ⃗x ) ∝ exp [−
1
2

( ⃗x − Σ)TΣ−1( ⃗x − ⃗μ )] Σ =
0.5 0.1 0.25
0.1 0.5 0.1

0.25 0.1 0.5
, ⃗μ = (0,0,0)

Correlations are well captured!
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Results for  
leading-order event 
generation

pp → tt̄
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Simulation with actual LHC data

Testing the styled qGAN with real data: test-case with leading-order production pp → tt̄

2319/11/2021 Quantum machine learning for event generation – Julien Baglio, CERN TH QCD seminar

Training and reference samples generated with MadGraph5_aMC@NLO [Alwall et al., JHEP 07 (2014) 079]

LHC at 13 TeV set-up, training set of 104 samples, Mandelstam variables  and rapidity (s, t) y

https://arxiv.org/abs/1405.0301
https://arxiv.org/abs/1405.0301


Results of noiseless simulations
After classical training, assessment of the potential performance with noiseless simulations
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Simulation performed on a classical computer with a quantum simulator in the qibo framework
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Results of noiseless simulations
After classical training, assessment of the potential performance with noiseless simulations
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Simulation performed on a classical computer with a quantum simulator in the qibo framework

Remarkable low KL divergences with data augmentation! 
Are these nice results maintained on real hardware ?



Preparing actual runs: simulating the noise

 Before sending jobs on real hardware: estimate the impact of noise on the results⇒
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Current hardware era: Noisy Intermediate-Scale Quantum (NISQ) devices

• Read-out errors, decoherence time 

• Probability of state  being actually in state  (and vice-versa) 

• One-qubit gate errors, Two-qubit gate errors, etc.

|0⟩ |1⟩
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Preparing actual runs: simulating the noise

 Before sending jobs on real hardware: estimate the impact of noise on the results⇒
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Current hardware era: Noisy Intermediate-Scale Quantum (NISQ) devices

• Read-out errors, decoherence time 

• Probability of state  being actually in state  (and vice-versa) 

• One-qubit gate errors, Two-qubit gate errors, etc.

|0⟩ |1⟩



Results on IBM Q hardware
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Access to IBM quantum hardware via IBM Q cloud service

Technology of superconducting transmon qubit: reduced sensitivity to charge noise 

• Translation of qibo Python script to IBM qiskit Python script 

• Run on ibmq_santiago 5-qubit machine
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Results on IBM Q hardware
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Access to IBM quantum hardware via IBM Q cloud service

Technology of superconducting transmon qubit: reduced sensitivity to charge noise 

• Translation of qibo Python script to IBM qiskit Python script 

• Run on ibmq_santiago 5-qubit machine

Still good results with 
relatively low KL divergence!



Testing of different architectures

Superconducting transmon qubits: 
ibmq_santiago with 2-neighbouring site 
connectivity

2719/11/2021 Quantum machine learning for event generation – Julien Baglio, CERN TH QCD seminar

Trapped ion technology: ionQ 
with all-to-all connectivity

Access via IBM Q cloud service Access via Amazon Web Services



Testing of different architectures: results
• Translation of qibo Python script to Amazon Web Services Braket script 

• Access constraints to ionQ: test limited to 1k samples only
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ionQ samples:
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IBM Q samples:



Testing of different architectures: results
• Translation of qibo Python script to Amazon Web Services Braket script 

• Access constraints to ionQ: test limited to 1k samples only
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IBM Q samples:

Very similar results: 

algorithm largely hardware-independent



19/11/2021 29

Conclusions: What’s 
next?
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Summary of main points

• A proof-of-concept for a quantum generator (styled qGAN) has been presented 

• A test-case with real Monte Carlo event has demonstrated success: the generator has 
learnt underlying  distributions and correlations for  production 

 Demonstrated data augmentation from 104 training data to 105 generated data 

• The quantum network is shallow: great advantage in the current NISQ era 

• Tested on two different quantum architectures: superconducting transmon qubits 
(IBM) and trapped ions (ionQ) with similar performances 

 The quantum generator seems quite hardware-independent 

(s, t, y) pp → tt̄
⇒

⇒
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Code available at https://doi.org/10.5281/zenodo.5567077

https://doi.org/10.5281/zenodo.5567077
https://doi.org/10.5281/zenodo.5567077


What’s next?
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Apply error mitigation 

techniques to increase the 
quality of the output?  

 
Apply the styled qGAN to other 

problems (parton shower? 
Monte Carlo integration?)  

 
Transition from hybrid approach 

to a full quantum GAN: 
discriminator+generator in one 

quantum network? 



Thanks for your attention! 
Questions?

CERN Quantum Hub

7

• CERN is a hub member of the Quantum Network 

• Access to IBM Hardware based on quotas for 
Hub members and projects 

• Currently looking for expressions of interest for 
new members

CERN QTI - DM Grabowska05/11/2021

We have access to real-world quantum computers!
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Circuit run on IBM Santiago for QML Paper 


